Denseness of $J = \{A + BT : A, B \in M_k(Z)\}$ in the Space of all $k \times k$ real matrices, where T is a fixed $k \times k$ matrix with irrational entries

K.Shaju¹, Sabu Sebastian², C.P.Santhosh³, V.Girish⁴, M.P.Sirajudheen⁵

¹Assistant Professor, Department of Mathematics, NAM College, Kallikkandy, Kannur , Kerala, India

E-mail: shaju.kollaroth@gmail.com

²Professor, Department of Mathematics, Nirmalagiri College, Kerala, India

E-mail:sabukannur@gmail.com

³Associate Professor, Department of Mathematics, KMM Govt. Wemon's College, Kannur , Kerala, India

E-mail:santhoshcpchu@gmail.com

 $^4 Associate\ Professor, Department\ of\ Statistics, NAM\ College, Kallikkandy, Kannur\ , Kerala, India$

E-mail:girishvengilote@gmail.com

⁵Assistant Professor, Department of Mathematics, Sir Syed College, Thalipparamba, Kannur, Kerala, India E-mail:sirajmp@sirsyedcolege.ac.in

Abstract- Several countable minimal dense subsets of R are known to exist. An important example is the set $Z + Zq = \{a + bq: a, b \in Z\}$, where q is an irrational number. In this paper, we establish an analogous result in the space of matrices $M_k(R)$. We prove that the set

 $J=\{A+BT:A,B\in M_k(Z)\}$ is dense in $M_k(R)$ under the metric on $M_k(R)$ defined by

$$d(X,Y) = ||X - Y||_p = \left(\sum_{1 \le i,j \le k} |X(i,j) - Y(i,j)|^p\right)^{\frac{1}{p}}$$

Where T be a fixed matrix in $M_k(R)$ whose entries are irrational numbers.

Keywords: Dense sets, Space of matrices, Sequential convergence, Archimedean Property, Countability

1. Introduction

The study of dense subsets of R under the usual metric has been a foundational topic in real analysis and number theory. It is well known that many dense subsets of R exist under the usual metric. The set of all rational numbers Q is a well-known example of a countable minimal dense subset of R. similarly, the set of all irrationals is also dense in R, though uncountable. Beyond these classical examples, the set $Z + Zq = \{a + bq: a, b \in Z\}$, where q is irrational, plays a central role in the construction of countable dense subsets of R. This set behaves similarly to Q and forms a minimal dense subset of R. Although several proofs exist for this result, here we present a sequential convergence proof that provides a constructive understanding of the denseness property. The proof uses a recursively defined sequence $(x_n) \subset Z + Zq$ converging to zero. Using this, we establish the denseness of Z + Zq in R. We then extend this idea to the Euclidean space R^m , and further to the matrix space $M_k(R)$, the set of all $k \times k$ real matrices. We prove that $J = \{A + BT : A, B \in M_k(Z)\}$ is dense in $M_k(R)$ whenever T is a matrix with irrational entries. This result provides a natural higher-dimensional generalization of the classical integer-irrational denseness property.

2. Preliminaries

Archimedean Property 2.1. [3] If $x, y \in R$ with x > 0, then there exist a positive integer n such that nx > y

Inequality Lemma 2.2. If a, b > 0 and a + b = k with , then minimum $\{a, b\} \le \frac{k}{2}$

Density Extension Lemma 2.3. Let A be a dense subset of R, then any set B with $A \subset B \subset R$ is also dense in R.

3. Denseness of Z + Zq via Sequential Convergence and its extension

Theorem.3.1: Let Z is the set of all integers, and q is a fixed irrational. Then the set $Z + Zq = \{a + bq : a, b \in Z\}$ is dense in R.

Proof: Let q be a fixed irrational number. We construct a strictly decreasing sequence (x_n) with $x_n \in Z + Zq$, $\forall n$ with $x_n \to 0$

Let $x_1=q-[q]$, where [q] denotes the greatest integer less than or equal to q

Clearly $0 < x_1 < 1$.

Let k_1 be the least positive integer such that $k_1 x_1 > 1$. Then

$$0 < (k_1 - 1) x_1 < 1 < k_1 x_1$$

By the Inequality Lemma, either $k_1 x_1 - 1$ or $1 - (k_1 - 1) x_1$ less than or equal to $\frac{x_1}{2}$. (Atually it is strictly less than ,since q is irrational). Denote this smaller value by x_2

Then,
$$x_2 = min\{k_1 x_1 - 1, 1 - (k_1 - 1) x_1\}$$
 and $0 < x_2 \le \frac{x_1}{2} < x_1 < 1$. Also $x_2 \in Z + Zq$

Proceeding recursively, we define $x_{n+1} = min\{k_n \ x_n - 1 \ , 1 - (k_n - 1) \ x_n\}$ with k_n the least positive integer such that $k_n \ x_n > 1$.

Then $0 < x_{n+1} \le \frac{x_n}{2}$, so

$$0 < x_n \le \frac{x_1}{2^{n-1}}$$

Implying $x_n \to 0$.

Hence, for any $\varepsilon > 0$, there exist a positive integer N_0 such that

$$0 < x_n < \varepsilon$$
, for all $n \ge N_0$ (1)

Next we will prove that the set $Z + Zq = \{a + bq: a, b \in Z\}$ is dense in R

Now let r be any real number, $\varepsilon > 0$ be given.

If $r \in Z + Zq$, there is nothing to prove.

So we assume $r \notin Z + Zq$ consider the case r > 0.

By the convergence of (x_n) , we can choose an x_k in the sequence such that $0 < x_k < r$ and $x_k < \varepsilon$.

That is, choose $x_k < min\{r, \varepsilon.\}$

Then there exist a positive integer M such that $Mx_k < r < (M+1)x_k$.

Hence,

$$r < (M+1)x_k = Mx_k + x_k < r + \varepsilon$$
, and since $(M+1)x_k \in Z + Zq$

We have a point $(M+1)x_k \in Z + Zq \cap B(r,\varepsilon)$, where $B(r,\varepsilon)$ denotes the ε -neibourhood of r

For r < 0, take r = -s with s > 0, and $\varepsilon > 0$ be given.

Then by the above result, we can find a $y \in Z + Zq$ such that

$$s < y < s + \varepsilon$$

Then

$$-s-\varepsilon<-v<-s$$

That is,
$$r - \varepsilon < -y < r$$
 and $-y \in Z + Zq$

$$\Rightarrow$$
 $-y \in B(r, \varepsilon)$, with $-y \in Z + Zq$

This shows that for any real r and an $\varepsilon > 0$, the ball $B(r, \varepsilon)$ contains a point of Z + Zq

Thus Z + Zq dense in R.

Theorem.3.2. Let $q_1, q_2, q_3, ..., q_k$ be distinct irrationals. Then the set

Then the set $A = \{a + \sum_{i=1}^{k} a_i q_i : a, a_1, a_2, \dots, a_k \in Z\}$ is dense in R

Proof: $Z + Zq_1 = \{a + bq_1: a, b \in Z\}$ is dense in R and $Z + Zq_1 \subset A \subset R$, the result follows from the Density Extension Lemma

Theorem.3.3.Let $q = (q_1, q_2, q_3, ..., q_m) \in \mathbb{R}^m$ with $q_1, q_2, q_3, ..., q_m$ are fixed irrationals. Then

 $Z^m + Z^m q = \{(a_1 + b_1 q_1, a_2 + b_2 q_2, \dots, a_m + b_m q_m): a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_m \in Z\}$ is dense in R^m under the metric

$$||x - y||_p = (\sum_{i=1}^m |x_i - y_i|^p)^{\frac{1}{p}}$$

Proof: Let $x = (x_1, x_2, ..., x_m) \in \mathbb{R}^m$.

For each co-ordinate $x_k \in R$, by the above theorem there exist sequence $(a_n(k) + b_n(k)q_k)$ in Z + Zq_k such that

$$a_n(k) + b_n(k)q_k \rightarrow x_k$$

Hence,

$$(a_n(1) + b_n(1)q_1, a_n(2) + b_n(2)q_2, ..., a_n(m) + b_n(m)q_m) \rightarrow (x_1, x_2, ..., x_m)$$

That is $a_n + b_n q \to x$, where $a_n = (a_n(1), a_n(2), ..., a_n(m)), b_n = (b_n(1), b_n(2), ..., b_n(m)) \in$ R^m . This shows that $Z^m + Z^m q$ is dense in R^m under the metric

$$d(x,y) = \|x - y\|_p = \left(\sum_{i=1}^m |x_i - y_i|^p\right)^{\frac{1}{p}}$$

4. Extension to Space of Matrices

Theorem.4.1. Let $T \in M_k(I)$ be fixed, where I is the set of all irrationals. Then for any $X \in I$ $M_k(R)$, there exist sequences (A_n) , (B_n) with A_n , $B_n \in M_k(Z)$ such that $A_n + B_nT \to X$ under the metric on $M_k(R)$ defined by

$$d(X,Y) = \|X - Y\|_p = \left(\sum_{1 \le i,j \le k} |X(i,j) - Y(i,j)|^p\right)^{\frac{1}{p}}$$

Hence the set $J = \{A + BT : A, B \in M_k(Z)\}$ is dense in $M_k(R)$. This set is also a countable dense subset of $M_k(R)$

Proof: Let $X = [X(i,j)] \in M_k(R)$ and T = [T(i,j)]We have the set $A = \{a + \sum_{m=1}^k a_m q_m: a, a_1, a_2, ..., a_k \in Z\}$, where $q_1, q_2, q_3, ..., q_k$ are fixed irrationals, is dense in R

That is, for each entry X(i,j) of X, there exist sequences $(A_n(i,j))$, $(B_n(i,j))$ with entries in Z such that

$$C_n(i,j) = A_n(i,j) + \sum_{m=1}^k B_n(i,m) T(m,j) \to X(i,j)$$

That is, for each pair (i, j) and a given $\varepsilon > 0$, there exist a positive integer N such that

$$\left|A_n(i,j) + \sum_{m=1}^k B_n(i,m)T(m,j) - X(i,j)\right| < \frac{\varepsilon}{k^2}$$
, for every $n \ge N....(1)$

Take the matrices $A_n = [A_n(i,j)]$, $B_n = [B_n(i,j)]$. Then, $A_n + B_n T = [C_n(i,j)]$ such that

$$\begin{split} \| \left(A_n + B_n T \right) - X \|_p &= \left(\sum_{1 \leq i,j \leq k} |C_n(i,j) - X(i,j)|^p \right)^{\frac{1}{p}} \\ &< \left(\sum_{1 \leq i,j \leq k} \left| \frac{\varepsilon}{k^2} \right|^p \right)^{\frac{1}{p}} = \frac{\varepsilon}{k^2}. k^2 = \varepsilon, for \ every \ n \geq N. \end{split}$$

Thus the sequence $(A_n + B_n T)$ converges to X, proving that J is dense in Mk(R).

5. Conclusions: We established the denseness of the set Z + Zq via a sequential convergence argument. The result was extended to R^m and further to the space of matrices Mk(R). The construction shows that the set $J = \{A + BT : A, B \in M_k(Z)\}$ is a countable minimal dense subset of $M_k(R)$ under the p-norm metric.

References:

- [1]. Hardy, G. H., and Wright, E. M. *An Introduction to the Theory of Numbers*. Oxford University Press, 2008.
- [2]. Niven, I. Irrational Numbers. The Mathematical Association of America, 1956.
- [3]. Rudin, W. Principles of Mathematical Analysis. McGraw-Hill, 1976.