International Journal of Advanced Multidisciplinary Application (IJAMA)

Peer reviewed Journal II Open access Journal II ISSN Approved No: 3048-9350

Author : Ananya Singh¹, Rohit Das², Priya Menon³
Affiliation :1,2,3Department of Biomedical Engineering, Manipal Institute of Technology, Karnataka, India

Journal :International Journal of Advanced Multidisciplinary Application.(IJAMA)

ISSN No:3048-9350

Volume/Issue : Volume 2 Issue 7 -2025/July ,Page  No: 28 – 34

Abstract:

Artificial Intelligence (AI) is revolutionizing healthcare by enhancing diagnostic accuracy, personalizing treatment, and improving operational efficiencies. This paper reviews the current applications of AI in healthcare, including machine learning in medical imaging, predictive analytics, and robotic-assisted surgeries. The study also addresses challenges such as data privacy, ethical considerations, and integration with existing healthcare systems. Future directions emphasize the need for robust AI models, regulatory frameworks, and multidisciplinary collaboration to fully realize AI’s potential in healthcare.

Keywords: Artificial intelligence, Healthcare applications, Medical diagnostics, Machine learning, Health technology

Reference :

  1. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
  2. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., … & Ng, A. Y. (2018). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
  3. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. Machine Learning for Healthcare Conference, 301-318.
  4. Yang, G., Zhang, J., Liu, M., & Zhu, L. (2020). Artificial intelligence in robotic surgery: Current status and future perspectives. Artificial Intelligence in Medicine, 103, 101785.
  5. Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., … & Liu, H. (2019). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34-49.
  6. Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983.
  7. Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
  8. Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., … & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 1(6), e271-e297.
  9. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347-1358.
  10. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195.
  11. Chen, M., Hao, Y., Cai, Y., Wang, Y., & Wang, L. (2020). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 5(4), 230-243.
  12. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
  13. Sendak, M. P., D’Arcy, J., Kashyap, S., Gao, M., Nichols, M., Corey, K., & Balu, S. (2019). A path for translation of machine learning products into healthcare delivery. EMJ Innovations, 3(1), 18-23.
  14. Amisha, Malik, P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328-2331.
  15. Luo, Y., Thompson, W. K., Herr, T. M., Zeng, Z., Berendsen, M. A., Van de Velde, L. A., … & Shi, L. (2017). Natural language processing for EHR-based pharmacovigilance: a structured review. Drug Safety, 40(11), 1075-1089.
  16. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216-1219.
  17. Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983.
  18. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1721-1730.
  19. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.
  20. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36.
  21. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866-872.
  22. Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine—beyond the peak of inflated expectations. The New England Journal of Medicine, 376(26), 2507-2509.
  23. Rigby, M. J. (2019). Ethical dimensions of using artificial intelligence in health care. The Hastings Center Report, 49(1), 29-35.
  24. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
  25. Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. The New England Journal of Medicine, 372(9), 793-795.
  26. FDA. (2019). Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). U.S. Food & Drug Administration.
  27. Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.
  28. Morley, J., Machado, C. C., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172.
  29. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
  30. Liu, X., Chen, Y., & Zhang, L. (2020). Artificial intelligence in medical imaging: opportunities, applications, and risks. Chinese Journal of Academic Radiology, 29(4), 421-435.
  31. Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current Cardiology Reports, 16(1), 441.
  32. Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. NPJ Digital Medicine, 2(1), 77.
  33. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36.
  34. Saria, S., Butte, A., & Sheikh, A. (2018). Better medicine through machine learning: what’s real, and what’s artificial? PLoS Medicine, 15(12), e1002721.
  35. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216-1219.
  36. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.
  37. Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1), 310.
  38. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195.
  39. Wong, A., Otles, E., Donnelly, J. P., Krumm, A., McCullough, J., & DeRosa, A. P. (2020). External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Internal Medicine, 180(8), 1065-1070.
  40. Meskó, B., Hetényi, G., & Győrffy, Z. (2018). Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Services Research, 18(1), 545.
  41. Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.
  42. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98.
  43. Park, S., & Chung, K. (2021). Data-driven AI applications for personalized medicine: opportunities and challenges. International Journal of Molecular Sciences, 22(7), 3552.

Our Indexing

Author Benefits

Global visibility
Multidisciplinary platform Unique DOI Open access Affordable fees Fast review Author certificates No extra costs Secure platform Database indexing Interdisciplinary collaboration Submission tracking Academic recognition

 

editorinchief.ijama@gmail.com

© 2024  IJAMA

Contacts

editorinchief.ijama@gmail.com

Working days : Mon- Saturday 

Working Hours :9 am -5:30 Pm