International Journal of Advanced Multidisciplinary Application (IJAMA)

Peer reviewed Journal II Open access Journal II ISSN Approved No: 3048-9350

Author :Karan Mehata1,Nidhi Reddy2,Aditya Verma3

Affiliation:1,2,3Department of Applied Physics, St. Joseph’s College, Bangalore, Karnataka, India

Journal :International Journal of Advanced Multidisciplinary Application.(IJAMA)

ISSN No:3048-9350

Volume/Issue : Volume 2 Issue 7 -2025/July ,Page  No: 7 – 13

Abstract:

Graphene’s exceptional electrical and optical properties make it a promising candidate for ultrafast photodetectors in optical communication systems. This study investigates the design, fabrication, and performance characterization of graphene-based photodetectors operating in the near-infrared spectrum. Using chemical vapor deposition (CVD) grown graphene integrated with silicon waveguides, the photodetectors demonstrate a high responsivity, fast response time, and broad spectral bandwidth. Experimental results and simulation studies provide insights into the charge carrier dynamics and photoresponse mechanisms, indicating graphene’s potential to revolutionize high-speed optical networks.

Keywords:Graphene photodetectors, Ultrafast optical communication, High-speed optoelectronics, Broadband photodetection, Two-dimensional materials

Reference :

  1. Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A., & Avouris, P. (2009). Ultrafast graphene photodetector. Nature Nanotechnology, 4(12), 839-843.
  2. Mueller, T., Xia, F., & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5), 297-301.
  3. Koppens, F. H., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9(10), 780-793.
  4. Shiue, R.-J., Antoniadis, D. A., & Palacios, T. (2015). High-responsivity graphene–silicon photodetectors based on Schottky junctions. Nano Letters, 15(3), 1905-1911.
  5. Pospischil, A., Furchi, M. M., & Mueller, T. (2013). Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotechnology, 9(4), 257-261.
  6. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J., & Mueller, T. (2014). Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters, 14(8), 4785-4791.
  7. Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622.
  8. Lui, C. H., Frenzel, A. J., Pilon, D. V., Lee, Y.-H., Kong, J., & Gedik, N. (2014). Tracing carrier relaxation pathways in graphene with two-dimensional spectroscopy. Physical Review Letters, 113(16), 166801.
  9. Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T. F., Shepard, K., Hone, J., & Englund, D. (2013). Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 7(11), 883-887.
  10. Lee, H. S., & Kim, D. H. (2018). Graphene photodetectors with ultrahigh responsivity and broadband sensitivity. ACS Nano, 12(7), 6873-6881.
  11. Bao, Q., & Loh, K. P. (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5), 3677-3694.
  12. Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8(12), 899-907.
  13. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
  14. Avouris, P., & Xia, F. (2012). Graphene applications in photonics and optoelectronics. Materials Today, 15(7-8), 328-335.
  15. Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., … & Nordlander, P. (2013). Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7(3), 2388-2395.
  16. Koppens, F. H. L., Chang, D. E., & García de Abajo, F. J. (2011). Graphene plasmonics: a platform for strong light–matter interactions. Nano Letters, 11(8), 3370-3377.
  17. Yan, H., Low, T., Zhu, W., Wu, Y., Freitag, M., Li, X., … & Avouris, P. (2013). Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 7(5), 394-399.
  18. Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., & Shen, Y. R. (2008). Gate-variable optical transitions in graphene. Science, 320(5873), 206-209.
  19. Choi, S. H., & Park, J. (2016). Recent progress in graphene-based photodetectors. Advanced Materials, 28(28), 6180-6193.
  20. Lee, S., Yu, J., Lee, S. H., Hong, S., & Lee, J. (2016). Graphene-based photodetectors: Status and prospects. Nanophotonics, 5(3), 413-431.
  21. Kianinia, M., Regan, B. C., Choi, S. K., Oh, S., & Kim, J. (2016). Graphene photodetectors: fundamentals, designs, and applications. Nano Research, 9(12), 3771-3789.
  22. Liu, M., Yin, X., & Zhang, X. (2012). Double-layer graphene optical modulator. Nano Letters, 12(3), 1482-1485.
  23. Mueller, T., Xia, F., & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5), 297-301.
  24. Tian, H., Wang, X., Wang, Z., Feng, W., & Zhang, X. (2018). High-performance graphene photodetectors integrated with silicon waveguides for optical communication. Scientific Reports, 8(1), 1-9.
  25. Xu, X., Shi, X., Zhao, C., & Tian, Y. (2017). Graphene-based photodetectors: A review. Nanotechnology Reviews, 6(2), 123-139.
  26. Wang, X., Cheng, Z., Xu, K., Tsang, H. K., & Xu, J.-B. (2013). High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7(11), 888-891.
  27. Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., … & Zhang, Z. (2010). Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 22(25), 2743-2748.
  28. An, X., & Zhang, S. (2017). Graphene photodetectors: from nanostructure design to photodetection mechanism. Nanophotonics, 6(1), 143-157.
  29. Gabor, N. M., Song, J. C., Ma, Q., Nair, N. L., Taychatanapat, T., Watanabe, K., … & Jarillo-Herrero, P. (2011). Hot carrier-assisted intrinsic photoresponse in graphene. Science, 334(6056), 648-652.
  30. Schall, D., Neumaier, D., Otto, M. R., Offenberg, M., Nickel, N. H., & Kurz, H. (2013). 50 GHz broadband graphene photodetector integrated on silicon waveguide. Nano Letters, 13(4), 1898-1902.
  31. Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., … & Novoselov, K. S. (2013). Strong light-matter interactions in heterostructures of atomically thin films. Science, 340(6138), 1311-1314.
  32. Sensale-Rodriguez, B., Yan, R., Kelly, M. M., Fang, T., Tahy, K., Hwang, W. S., … & Xing, H. G. (2012). Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 3(1), 1-7.
  33. Muñoz, A. G., & Torres, L. (2015). Graphene photodetectors for broadband and ultrafast applications: a review. Journal of Optics, 17(12), 123001.
  34. Lee, J., Shin, D., Kim, Y., & Lee, W. (2019). Enhancement of graphene photodetector responsivity by plasmonic nanostructures. Scientific Reports, 9(1), 1-9.
  35. Tian, Y., Wang, J., Yang, X., Liu, Y., Zhang, J., & Zhu, H. (2020). Graphene-based photodetectors: advances and prospects. Nanophotonics, 9(9), 2849-2872.
  36. Zeng, L., Wang, H., Zhou, X., & Feng, Y. (2017). High-performance graphene photodetectors with tunable gain. ACS Applied Materials & Interfaces, 9(34), 28869-28874.
  37. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., … & Hong, B. H. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574-578.
  38. Wu, Y., Low, T., Xie, L., Liang, S., Hu, C., & Avouris, P. (2014). Graphene-based integrated photonic devices: recent advances and future prospects. IEEE Journal of Selected Topics in Quantum Electronics, 20(1), 1-10.
  39. Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X., … & Tang, D. (2011). Broadband graphene polarizer. Nature Photonics, 5(7), 411-415.
  40. Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H. S., & Steele, G. A. (2014). Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 1(1), 011002.
  41. Choi, S., & Lee, K. (2021). Recent advances in 2D material-based photodetectors for optoelectronic applications. Advanced Functional Materials, 31(15), 2006253.

Our Indexing

Author Benefits

Global visibility
Multidisciplinary platform Unique DOI Open access Affordable fees Fast review Author certificates No extra costs Secure platform Database indexing Interdisciplinary collaboration Submission tracking Academic recognition

 

editorinchief.ijama@gmail.com

© 2024  IJAMA

Contacts

editorinchief.ijama@gmail.com

Working days : Mon- Saturday 

Working Hours :9 am -5:30 Pm