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Abstract- Induction motors and gearboxes are critical components in modern industries, serving as essential 

tools for the operation of numerous machines. This study presents a diagnostic approach for identifying various 

faults in an electromechanical system using infrared thermography and a convolutional neural network 

(CNN). The experiments involved testing the motor and gearbox under different conditions. The induction 

motor was evaluated in four states: healthy, with a broken bar, a damaged bearing, and misalignment. The 

gearbox was assessed under three conditions: healthy gears, 50% wear, and 75% wear. Faults were introduced 

through controlled machining operations. Data augmentation techniques, such as mirroring and brightness 

variation, were applied to enhance the dataset. Ablation studies were conducted, and a CNN with a simplified 

architecture was designed. The model achieved a precision of 98.53%, accuracy of 98.54%, recall of 98.65%, 

and F1-Score of 98.55%. These results demonstrate that the combination of infrared thermography and deep 

learning effectively detects faults across multiple components of an electromechanical system. 
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1. Introduction 

Electromechanical systems, consisting of both mechanical and electrical components, are essential in 

various modern industries. Their applications span across sectors such as manufacturing, the electrical 

industry, process automation, and the automotive industry, among others [1,2]. These systems integrate 

components like pulleys, belts, shafts, and mechanical couplings, all of which contribute to their 

functional versatility. However, induction motors (IMs) and gearboxes (GBs) are the most prominent 

components in industrial electromechanical systems due to their unique ability to convert electrical 

energy into mechanical energy while managing torque transmission efficiently [3]. 

The widespread adoption of IMs and GBs is attributed to their numerous advantages, including 

affordability, robust mechanical design, adaptability to variable load conditions, versatility, low 

maintenance requirements, efficiency, and reliability in harsh environments [4]. Despite these benefits, 

the operational lifespan of these components is often marred by unexpected faults, leading to 

unscheduled downtimes and significant disruptions in industrial processes. Faults in IMs are typically 

categorized into electrical and mechanical stresses. Electrical stresses often arise from power supply 

issues, resulting in stator faults such as short circuits in the stator winding. On the other hand, 

mechanical stresses, often caused by overloads, can lead to bearing defects, broken rotor bars, 

imbalance, and misalignment [5]. 

Similarly, GBs are prone to severe faults, including broken or chipped gear teeth, as well as non-severe 

failures such as pitting, tearing, and wear, all of which can compromise their performance [6]. Faults in 

either IMs or GBs can trigger system-wide breakdowns, halting machinery operations and incurring 

economic losses due to production downtime [2]. This underscores the importance of developing and 
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implementing robust strategies for continuous condition monitoring to ensure the reliability and 

efficiency of industrial electromechanical systems. 

Condition monitoring has become a pivotal technique for engineers and researchers, enabling the early 

detection of faults in electromechanical systems. By measuring physical parameters such as vibrations, 

acoustic emissions, electric currents, stray flux, and thermal variations, it is possible to assess system 

behavior and identify faults using advanced signal processing techniques [3]. Methods like Wavelet 

Transform (WT), Fast Fourier Transform (FFT), Empirical Mode Decomposition (EMD), Variational 

Mode Decomposition (VMD), and Motor Current Signature Analysis (MCSA) have been widely 

applied for analyzing electric current, vibration, sound, and flux signals [10–12]. 

While these traditional methods are effective, they often require the expertise of specialists to interpret 

results accurately. Misinterpretation of these results can lead to errors, especially when designing 

automated fault diagnosis systems. In this context, infrared thermography (IRT) has emerged as a non-

invasive and non-destructive alternative with vast potential for condition monitoring. When properly 

implemented, IRT offers a promising solution for automating the fault detection process in 

electromechanical systems [13]. 

This research explores the integration of IRT with modern deep learning techniques, specifically 

convolutional neural networks (CNNs), to develop a more efficient and accurate approach to fault 

diagnosis in IMs and GBs. By leveraging the capabilities of IRT and CNNs, this study aims to address 

the limitations of traditional methods and provide a reliable, automated solution for monitoring and 

diagnosing faults in industrial electromechanical systems. 

Infrared Thermography (IRT) is increasingly being utilized for the condition monitoring of 

electromechanical systems, providing a technologically advanced approach to detect and address faults 

in components like induction motors (IM) and gearboxes (GB). Traditional IRT methods often involve 

manual interpretation of thermographic images, either through direct visual inspection or with the aid 

of commercial software. However, these methods are heavily reliant on the operator's experience and 

expertise, posing challenges such as extended time requirements and potential for human error. 

Addressing Limitations in Current Methodologies for Fault Detection 

Most methodologies in the existing literature focus narrowly on analyzing single elements of 

electromechanical systems using infrared thermography (IRT). For instance, studies involving induction 

motors (IMs) often target specific components, such as the stator winding, bearings, or broken rotor 

bars, without providing a comprehensive analysis of the entire system [17–24]. Similarly, research on 

gearboxes (GBs) primarily emphasizes individual fault conditions, such as gear wear, broken gear teeth, 

or cracks [6]. These focused approaches, while effective in their limited scope, fail to harness the full 

potential of the implemented techniques. 

The reliance on complex methodologies tailored for detecting a single fault condition results in 

significant inefficiencies, including underutilization of computational resources and failure to address 

the multi-fault dynamics of an electromechanical system. Moreover, such methodologies typically 

impose a heavy computational load due to their intricate designs, reducing their practical applicability 

in real-world industrial settings. 

A notable gap in the literature is the lack of methodologies that investigate combined faults across key 

components like IMs and GBs. Failures in one component can propagate through the electromechanical 

system, potentially causing cascading issues. Despite this, most studies focus on isolated faults, ignoring 

the interconnected nature of these systems. Additionally, while deep learning approaches are 

increasingly employed, many studies fail to incorporate strategies for augmenting datasets or optimizing 

algorithm design. This shortfall becomes particularly problematic when dealing with noisy thermal 

imaging data, a common challenge in industrial environments. 
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Contribution of the Study 

To address these gaps, this paper proposes a novel, non-invasive methodology that integrates 

convolutional neural networks (CNNs) with IRT to detect and classify multiple faults in 

electromechanical systems. The methodology emphasizes the detection of faults in both IMs and GBs 

and extends its scope to explore combined faults. An experimental study was conducted using thermal 

images obtained under various fault scenarios: 

• Induction Motor (IM): Faults analyzed include healthy state (HLT), outer bearing fault (OB), 

broken bar (BB), and misalignment (MAL). 

• Gearbox (GB): Conditions studied include healthy gears and gear wear at 50% and 75%. 

• Combined Faults: Fault scenarios integrating both IM and GB conditions to simulate real-world 

multi-fault scenarios. 

To enhance the dataset and improve the robustness of the methodology, noise was deliberately 

introduced into the thermographic images. Pixel intensity levels were modified, and salt-and-pepper 

noise was added to simulate real-world conditions. A specialized CNN architecture was designed to 

process noisy thermal images effectively, achieving remarkable results with an accuracy of 98.5% in 

classifying multi-fault scenarios. 

Implications 

The proposed methodology offers several advantages: 

1. Non-invasive Monitoring: It allows for contactless fault detection, making it suitable for harsh 

industrial environments. 

2. Comprehensive Fault Analysis: By addressing both IM and GB faults, as well as their combined 

effects, the methodology provides a holistic view of electromechanical system health. 

3. Noise Robustness: The ability to handle noisy data ensures reliable performance in real-world 

conditions. 

4. Operational Benefits: Early and accurate fault detection reduces the risk of progressive damage, 

enhances safety, maintains process quality, and minimizes downtime. 

This approach has the potential to revolutionize fault diagnosis in electromechanical systems by 

enabling timely and reliable condition monitoring. By identifying internal faults that are difficult to 

detect using traditional methods, it directly addresses challenges associated with operational 

inefficiencies and safety risks, ultimately contributing to improved industrial productivity and reduced 

maintenance costs. 

Infrared Thermography (IRT) has emerged as a powerful tool for condition monitoring in 

electromechanical systems, offering advanced capabilities to detect and diagnose faults in components 

like induction motors (IM) and gearboxes (GB). Traditional IRT methods rely on manual interpretation 

of thermographic images, either through direct analysis or with the assistance of commercial software. 

These methods, while widely used, are time-intensive and heavily dependent on the expertise of the 

operator, which increases the likelihood of human error. To address these limitations, semi-automatic 

techniques have been developed, leveraging image processing algorithms to identify regions of interest. 

However, these approaches still require human interpretation for diagnosis, demanding significant 

training and experience. 

The integration of artificial intelligence (AI) has significantly enhanced IRT-based methodologies by 

enabling the automatic detection, extraction, and classification of faults, minimizing the need for human 
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intervention. Advanced image processing techniques, such as thresholding, edge detection, and 

segmentation, are combined with feature extraction methods like Scale-Invariant Feature Transform 

(SIFT), Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA) to analyze fault 

conditions effectively. Furthermore, machine learning algorithms like Decision Trees, Support Vector 

Machines (SVM), and k-means clustering, along with deep learning models such as Convolutional 

Neural Networks (CNNs), have demonstrated superior accuracy in fault diagnosis. 

Recent innovations have shown remarkable success. For instance, CNNs have been employed to extract 

fault features directly from thermographic images, achieving detection accuracies of 90–98% in 

bearings and other rotating machinery. Techniques like the Power of Normalized Image Difference 

(PNID), used with deep neural networks, have enabled precise analysis of faults in brushless direct 

current (BLDC) motors. Despite these advancements, challenges remain. Current methodologies often 

lack comprehensive analyses of multiple faults, and data augmentation techniques, crucial for training 

robust deep learning models, are underutilized. Additionally, noise handling in thermal images is an 

underexplored area that could further improve diagnostic accuracy. 

In conclusion, while IRT combined with AI has revolutionized fault detection in electromechanical 

systems, addressing issues such as noise corruption, multiple fault analysis, and data augmentation can 

enhance these methodologies further. Convolutional Neural Networks (CNNs), in particular, stand out 

as a transformative approach, offering precise, automated, and efficient fault classification capabilities. 

 

2. Proposed Methodology 

The proposed methodology for detecting multiple mechanical faults in induction motors (IM) and 

gearboxes (GB) is depicted in Figure 1. This approach consists of five interconnected stages aimed at 

ensuring precise and robust fault diagnosis. The process begins with the creation of a thermographic 

image database generated through physical experiments. These images serve as the foundation for 

subsequent analysis. In the second stage, the thermographic images are cropped to isolate specific 

regions of interest, such as the gearbox, coupling, and induction motor, while disregarding extraneous 

elements like the background or unrelated components. This refinement focuses the analysis on critical 

areas of the system. The third stage involves data augmentation to enhance the diversity and size of the 

image dataset. Techniques like horizontal flipping and intensity variations are applied to improve the 

CNN's generalization capabilities and overall performance. The fourth stage is centered on the design 

and testing of the CNN architecture. Ablation tests are conducted to determine the optimal 

configuration, and noise is introduced into the thermographic images to evaluate the robustness of the 

proposed model. Filtering techniques are employed to mitigate the impact of this noise. In the final 

stage, the methodology enables the diagnosis and classification of faults into twelve distinct classes, 

accounting for various combinations of faults in both the IM and GB. 

The development of the thermographic image database was a critical aspect of this research. Images 

were acquired from an experimental test bench comprising an electromechanical system. This setup 

included a 1.5 kW WEG induction motor mechanically coupled to a BALDOR 4:1 gearbox via a rigid 

coupling, which in turn was connected to a BALDOR direct current generator. The generator simulated 

approximately 20% of the motor's rated load under working conditions. The experiments spanned 80 

minutes, sufficient time for the motor to reach a steady state, with images captured every minute. In 

total, 80 images were collected for each test condition. A FLIR GF320 thermographic camera, featuring 

a resolution of 320 × 240 pixels, a thermal sensitivity of <15 mK at 30°C, and a spectral range of 3.2–

3.4 μm, was employed for image acquisition. Additionally, a Fluke 975 air quality meter monitored the 

environmental conditions of the test room, while the emissivity setting of 0.95 ensured accurate 

temperature readings. All images were captured in grayscale to standardize data and highlight thermal 
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variations caused by system faults. This comprehensive and meticulous data acquisition process 

established a robust foundation for implementing the proposed methodology. 

 

2.1. Database:In the database stage, a comprehensive acquisition of thermographic images was 

undertaken to construct a robust experimental database. This work utilized an experimental test bench 

designed around an electromechanical system to generate the required data. The setup featured a 1.5 

kW WEG induction motor mechanically linked to a BALDOR 4:1 gearbox through a rigid coupling. 

Further, the gearbox was connected to a BALDOR direct current generator using another rigid coupling. 

The generator simulated a load approximately 20% of the rated capacity of the induction motor under 

operational conditions. 

The testing phase spanned eighty minutes, aligning with the estimated time required for the motor to 

reach a steady-state condition. Throughout the duration of the test, thermographic images were captured 

at one-minute intervals, resulting in a total of 80 images per test condition. The thermographic images 

were obtained using a FLIR GF320 camera equipped with a resolution of 320 × 240 pixels, a thermal 

sensitivity of less than 15 mK at 30°C, and a spectral operating range of 3.2–3.4 μm. All images were 

captured in grayscale mode to enhance consistency and highlight temperature variations within the 

system. 

 

To ensure the accuracy of environmental conditions during data acquisition, a Fluke 975 air quality 

meter was employed to monitor the testing environment. Furthermore, an emissivity value of 0.95 was 

used to optimize the precision of temperature readings in the captured thermographic images. This 

systematic and controlled approach to image acquisition forms a foundational step in the proposed 

methodology, providing a reliable and high-quality dataset for subsequent analysis and fault detection. 
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2.2. Image Cropping and Data Augmentation: According to Bu et al. [29], the quantity of images or 

data directly influences the convergence of CNN classification models. As a result, offline techniques 

are utilized to enhance the database, encompassing suggested approaches such as rotation, inversion, 

and contrast enhancement. Furthermore, Fonseca et al. [30] proposed data augmentation through 

geometric transformations like horizontal and vertical flips to expand the database while preserving the 

inherent characteristics of the original images. An additional method employed to enlarge the database 

involved modifying the initial images using slight amounts of salt and pepper noise. Furthermore, there 

are documented studies where researchers have examined CNN’s resilience by employing this approach 

[31]. This paper presents an initial database containing 600 thermal images of size 320 × 240 pixels; 

these images were acquired during the experimental setup; there are 50 images for each class or the 

different conditions of the induction motor. Initially, the region of interest of the original images was 

selected, and the image was cropped to a size of 140 × 70 pixels, which is the size required to have the 

complete image of the motor and gearbox. The eliminated information corresponds to the background 

and the load, which does not affect the objective of this work. On the contrary, this reduction in the 

image area allows less information to be processed, resulting in a lower computational load and faster 

training and inference time. To increase the database by 200 images for each test listed in Table 1, pre-

processing was performed by changing the intensity levels in each original image by 10%, 20%, and 

30%, resulting in a database of n = 2400. Changes in intensity levels are one of the techniques used as 

they help improve the training of the network, besides being one of the main scenarios when acquiring 

thermographic images [32]. Then, a horizontal flipping transformation was applied to the resulting 

database, obtaining a total of 4800 images. The optimal CNN configuration to achieve the expected 

results was determined from this database. 

2.3. CNN: Architecture A convolutional neural network (CNN) is an architecture through which 

learning and pattern recognition are performed on an input image (Figure 4), allowing the identification 

of differences among various images [33]. The primary structure of a CNN comprises four main layers: 

the convolutional layer, the pooling layer, the fully connected layer, and the SoftMax layer [34]. Appl. 

Syst. Innov. 2024, 7, x FOR PEER REVIEW 8 of 20 2.3. CNN Architecture A convolutional neural 

network (CNN) is an architecture through which learning and pattern recognition are performed on an 

input image (Figure 4), allowing the identification of differences among various images [33]. The 

primary structure of a CNN comprises four main layers: the convolutional layer, the pooling layer, the 

fully connected layer, and the SoftM 
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The convolutional layer receives the image as input and applies convolutional processes. Several filters, 

known as kernels, are applied. These filters are smaller than the original image and traverse the image 

through all pixels lengthwise and widthwise to create an activation map. This layer extracts features 

and patterns from the input images using the kernels and is responsible for capturing features such as 

color, gradient direction, etc. [35]. The pooling layer plays a crucial role in reducing the dimensions of 

the feature map and the parameters that were extracted from the preceding layer. This reduction helps 

prevent overfitting in the network. There are two primary types of pooling layers: the maximum pooling 

layer and the average pooling layer [36]. In this paper, both types of Appl. Syst. Innov. 2024, 7, 123 8 

of 19 layers were implemented to obtain the optimal CNN configuration. The fully connected layer is 

responsible for differentiating the features represented by the activation layers and identifying the input 

class. Each of these layers contains perceptrons, with the number of perceptrons being dependent on 

the size of the input images after the convolution and pooling layers [37]. The confusion matrix is used 

to assess the performance of CNN. The primary objective of this technique is to evaluate the CNN 

model based on the metrics obtained from both correct predictions and the errors identified during the 

classification. It not only provides information about the errors but also categorizes the types of errors 

made by the classifier [34] 

 

 

 

3. Results: The experiment was carried out using the final database as input images and following the 

main structure of the CNN. The following parameters were modified: filter sizes (3 × 3 and 4 × 4), the 

number of filters (8 and 16), average and maximum pooling layers, and the number of epochs (10 and 

20). This process aimed to obtain the optimal CNN configuration for classifying and identifying types 

of induction motor and gearbox faults. The results are categorized into three case studies or stages, as 

outlined in Section 2. The first is to configure and test CNN only with the database augmented. The 

second is to configure and test CNN with the database corrupted by 2% salt and pepper noise. And the 

third uses the same configuration as the second, but with images corrupted with salt and pepper noise 

at 10%, 20%, and 30%, as well as noise-filtered images for the maximum noise condition, i.e., 30%. 

The total database, consisting of n = 4800 images, is divided as follows: 60% for training (2880 images), 

20% for validation (960 images), and 20% for testing (960 images). Lastly, to evaluate the robustness 

of CNN, salt and pepper noise was introduced into the database. This encompassed both the original 
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images and images with varying levels of intensity. The total image count in the database remained at 

n = 4800. Appl. Syst. Innov. 2024, 7, 123 9 of 19 3.1. Configuring CNN with the Augmented Database 

The CNN was trained with 2880 randomly shaped images, which included original images with varying 

intensity levels and horizontal flips. These images encompassed the 12 different motor and gearbox 

conditions. Table 2 presents the recorded results (accuracy) derived from the extensive experimentation 

involving the diverse configurations of the CNN. 
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This decrease could potentially be attributed to the incorporation of noise applied to the input images 

for the purpose of database augmentation. In addition, it has been documented that the lower the number 

of filters in a convolutional layer, the better the accuracy of the system and the better the execution time 

of the network training [40]. However, it is important to note that the configuration that yielded the best 

results aligned with the optimal performance of the CNN in both stages. In the ultimate CNN model, 

the ReLU activation function, batch normalization, eight filters, a filter size of 3 × 3, and a 2 × 2 average 

pooling layer were employed, along with 20 epochs. These parameter values were determined after 

experimenting with various configurations. Figure 7 visually represents the accuracy (Figure 7a) and 

loss (Figure 7b) curves observed during the training process. 
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Finally, the performance indicators of each class in each of the tests performed, i.e., with data 

augmentation, with corrupted images, and with images after the noise removal process. From what has 

been observed, it can be seen that all of them have a good overall classification performance, with an 

average accuracy of over 98%. Similarly, there is a low percentage of false positives, i.e., incorrectly 

identifying the presence of a specific defect when it is not present, with an average precision of over 

94%. Similarly, there is a low percentage of false negatives, i.e., failing to detect a defect when it is 

present, with an average recall of over 93%. Finally, there is a good balance between precision and 

recall, with an average F1-Score of over 93%. However, it is important to note that the best results are 

obtained with data augmentation, followed by the corrupted images, and finally after removing noise 

from the images. 

When comparing the precision reported in the methodologies proposed in the literature with respect to 

the proposal made in this work, it can be observed that an accuracy of 100% is reported [19]. At first 

glance, one might think that the multi-fault detection problem in electromechanical systems is 

practically solved. However, there are some limitations to consider. As it can be a small data set, it can 

result in misleading precision [41]. In this sense, the size of the data set used in all the methodologies 

presented in Table 4 did not exceed 400 thermographic images, while in this work, to avoid a similar 

problem, a total of 4800 thermographic images were analyzed. However, in industrial applications, 

when there is a precision value greater than 70% in relation to automatic classification problems, this 

is considered acceptable due to how challenging it can be to capture and represent all the possible 

variations that an electromechanical system can have under real-life operating conditions [15]. Another 

aspect to evaluate is the number of failure conditions detected since the more faults that are studied, the 

lower the accuracy for classification [41]. In addition, when dealing with the study of multi-faults in an 

electromechanical system, it is important to consider in which elements of the system the fault occurs 

since most only focus on the analysis of the conditions of the IM, leaving aside another important 

element in the form of the GB. For this work, four types of conditions in the IM (HLT, BB, OB, and 

MAL), as well as three conditions in the GB (healthy gears, wear in the gears by 50% and 75%), 

obtained a precision of 98.5%. This indicates that the proposal of new methodologies can help with the 

problems that arise when studying multi-faults in electromechanical systems. Accuracy is one of the 

most widely used indicators to measure the performance of a classification algorithm [41]. However, it 
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is not the only indicator that needs to be calculated. This research proposes other indicators to be 

measured, such as precision, recall, and the F1-Score, which allow the performance of the CNN-based 

classification algorithm proposed for this work to be known. Based on the results, the best performance 

of the indicators was precision = 98.53%, recall = 98.65%, and F1-Score = 98.55%. In this way, a more 

complete overview of the performance of the proposed methodology is shown. In addition, when 

wanting to make a comparison with other methodologies related to Table 1, it is not possible because 

they do not report indicators other than accuracy. Finally, another important point to discuss is that the 

methodologies presented require a series of steps that make their implementation laborious and complex 

since they use image processing methods to segment hotspots, apply techniques for feature extraction 

and reduction, and algorithms that allow the classification of the state of the electromechanical system 

[17–20]. Having problems, such as the computational time required for the training and execution of 

the proposed methodologies, is significant with respect to the methodologies that implement fewer 

steps. On the contrary, the proposal of this work considers the architecture of the CNN for the direct 

processing of the thermographic image, thus having a lower computational load than that required by 

methodologies that use multiple steps. Furthermore, it is important to mention that of the proposals 

mentioned in Table 4, none addressed the inevitable corruption of noise, as proposed in this work. 

Having the design of a robust and reliable methodology that can be implemented in real-life scenarios 

is important. On the other hand, another advantage is that the proposed method can be used as a basis 

for other applications where thermographic images are used, such as the detection of electrical faults in 

induction motors. However, it is necessary to make the appropriate configurations and train the system. 

For this purpose, the best hyperparameters must be obtained through ablation tests. Lastly, this paper 

proposes a novel methodology that combines the analysis of thermographic images and convolutional 

neural networks (CNNs) for the automatic diagnosis and classification of multiple faults in the induction 

motor, as well as different levels of uniform wear conditions in a gear transmission system. Like 

vibration and acoustic technologies, thermography is a non-invasive technique that provides a discreet 

and convenient solution for diagnostics. This technology allows data to be collected without the need 

for direct physical contact or engine shutdown. 

5. Conclusions: In this work, a non-contact and novel methodology was developed to detect multiple 

faults in induction motors and gearboxes through CNN. The faults in the motor are a broken bar, 

damaged bearing, and misalignment; on the other hand, for the gearbox, gradual wear in the gears 

was induced. The healthy condition of both the induction motor and the gearbox was also 

considered. Based on this, it can be inferred that the use of infrared thermography combined with 

artificial intelligence can be used to develop high performance intelligent defect detection systems 

since temperature is an indicator of the presence of any alteration in the system. The major 

contributions are described below: • An initial database of 600 images with multiple engine failures 

and gearbox wear was created. Likewise, the database was expanded to 4800 images by performing 

basic transformations, such as mirroring or illumination changes. The pre-processing involves 

simulating possible scenarios in a real environment during the time of image acquisition for the 

thermographic images. • For the CNN configuration, ablation tests were performed based on the 

variation in the number of filters and the pooling layer, which allowed us to obtain the best 

configuration. It is important to mention that a basic configuration was obtained. Therefore, both 

the computational load and the processing time were low. The performance indicators showed an 

accuracy of 98.5%, a recall of 100%, a precision of 98%, and a F1-Score of 99%. • Finally, the main 

advantage of the CNN and thermographic imaging-based method compared to other traditional 

contact-based methods for detecting motor faults and gearbox wear is its ability to perform multi-

fault diagnosis in a kinematic chain in a fast, non-contact, and low computational way. The results 

obtained in this work suggest that this methodology is easy to use and suitable for the classification 

of multiple faults in asynchronous motors and wear on the teeth of a gearbox. It should be noted 

that, as with any methodology, this approach has limitations. It does not directly detect vibration, 

which may result in some initial mechanical failures going undetected until they generate sufficient 
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heat. It should be noted that the interpretation is susceptible to external factors such as ambient 

temperature or inadequate cooling. Although more expensive initially, infrared thermography 

provides a comprehensive, non-invasive, and rapid view of the engine’s condition, making it ideal 

for a more global approach or systems where thermal problems are common. To maximize the 

benefits of the method and control costs, it is often best to combine infrared thermography with 

other technologies, such as vibration, acoustics, thermography, electrical signals, and so on, 

depending on the specific needs of the system and the resources available. In future work, a 

combination of technologies, including vibration, electrical signals, ultrasound, and infrared 

thermography, will be selected according to the specific requirements of the system and the 

resources available for the detection and classification of faults in electromechanical systems. In 

addition, some other common faults in the electromechanical system could Appl. Syst. Innov. 2024, 

7, 123 18 of 19 be studied, and different intelligent state classification algorithms could be tested, 

such as autoencoders. In addition, the use of an embedded system is proposed to allow the automatic 

monitoring, detection, and classification of multiple faults in a single electronic device. In addition, 

by integrating new technologies, it is possible to create a digital twin of the electromechanical 

system to analyze different types of faults using virtual reality and to test different conditions safely 

without putting the equipment and the operator at risk. Finally, it is suggested that further tests be 

carried out with other types of transformations or noise in the original thermal images to replicate 

other conditions that may occur, such as Gaussian noise, Poisson noise, or speckle noise. 
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