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Abstract- Many natural signals exhibit quasi-periodic behavior and can be effectively modeled as combinations 

of harmonic sinusoids, where the relative frequencies, magnitudes, and phases change over time. The 

waveform shapes of these signals provide valuable insights into the physical phenomena that generate them, 

making accurate estimation and modeling of these parameters crucial. While much attention has been given 

to frequency and magnitude estimation, phase estimation and modeling have received comparatively less focus 

in the literature. This paper addresses the accurate estimation of phase using Discrete Fourier Transform 

(DFT) techniques across six different scenarios involving two DFT-based filter banks and three distinct window 

functions. It demonstrates that phase estimation bias is less than 0.001 radians when the signal-to-noise ratio 

(SNR) is 2.5 dB or higher. By comparing the performance with the Cramér-Rao lower bound (CRLB), it is 

shown that one specific window function offers significant practical benefits by closely approximating the 

CRLB under favorable signal conditions while minimizing performance deviation under less favorable 

conditions. Additionally, this paper introduces a shift-invariant phase-related feature that captures the 

harmonic phase structure. This feature forms the basis for a new signal processing paradigm that simplifies 

the parametric modeling, transformation, and synthesis of harmonic signals, aiding in the understanding and 

reverse engineering of the phasegram. The theoretical framework and experimental results are presented in a 

reproducible manner, with code provided to facilitate the replication of results and support further research. 

Keywords: phase estimation, harmonic phase structure, harmonic magnitude and phase modeling, harmonic 

signal processing. 

 

1. Introduction 

1.1. Motivation: Many natural and synthetic quasi-periodic signals, including speech, singing, 

physiological signals such as ECG, music, and acoustic waves from mechanical system vibrations, have 

a harmonic structure of sinusoids whose magnitudes, phases, and underlying fundamental frequencies 

vary over time. Harmonic phases are crucial in defining the waveform shape of quasi-periodic signals 

and are therefore immensely informative about the physical phenomena that generate them. Examples 

include the periodic glottal excitation signal, which illuminates the physiological processes governing 

vocal fold vibrations in the larynx; and periodic acoustic signals from mechanical systems, which 

provide insights into whether these systems are operating correctly within predefined safety margins. 

Given that harmonic phases depend explicitly on time, they vary much faster than harmonic magnitudes 

and fundamental frequencies; this is challenging from the perspectives of signal analysis, estimation, 

interpretation, modeling, transformation, and synthesis [1–4]. Since accurate frequency and magnitude 

estimation of sinusoids have been extensively discussed in the literature [5–13], in this paper, we assume 

that these factors have been addressed and will instead focus on two problems related to phase. The first 

concerns the practical and accurate DFT-based phase estimation of individual sinusoids. This is 

instrumental in addressing a second problem: the parametric modeling of sinusoid phases within a 

harmonic structure in a way that is time-shift invariant, interpretable, insightful, and simplifies harmonic 

signal processing. To the best of our knowledge, this is the first time such a combined perspective is 

presented in a manner that is easily apprehensible and extensively illustrated. This paper demonstrates 

that these problems can be tackled practically, facilitated by Matlab code that replicates the main results 

and illustrations presented 
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1.2. Problem Statement: This paper focuses on practical methods for representing quasi-periodic 

signals through the concepts of structure and parametric modeling. By ‘structure’, we mean an 

identifiable form or organization, and by ‘parametric modeling’, we mean a simple mathematical 

formulation that captures and models the organization using a limited number of controllable 

parameters. We acknowledge in this paper that the signals discussed are quasi-periodic and locally 

stationary. Quasi-periodicity means that the waveform shape in a periodic signal varies slowly among 

at least three adjacent periods, even though the period length may vary. Local stationarity means that 

harmonic parameters, such as sinusoidal magnitude and frequency, vary slowly over time, allowing 

them to be considered approximately constant within a short, windowed region of the observed signal. 

In this paper, we focus on phase representation, estimation, and parametric modeling. We first address 

the concept of structure based on the three aspects that define a stationary periodic signal: (i) frequency, 

(ii) magnitude, and (iii) phase. Let us consider a real-valued signal x(t) that consists of L sinusoids, as 

follows: 

 

 

i.e., the frequency of each sinusoid is a multiple integer of a fundamental frequency represented by Ω0. 

Thus, this frequency organization represents a frequency-related feature that is intrinsic and, therefore, 

structural, to any periodic signal. This means that the only information in the frequency structure that 

is truly unique is the fundamental frequency. A second structural aspect that defines a periodic signal 

consists of the organization of the magnitudes of the different harmonics and can be given by the ratio 

between the magnitude of each harmonic (Aℓ ) and that of the fundamental frequency magnitude (A0). 

If the latter is looked at as a gain, then a given periodic signal is characterized by a normalized 

magnitude-related feature vector, where the first value is one, and all other values (Aℓ/A0) help to define 

the waveform shape of the periodic signal. This magnitude related feature vector expresses the 

magnitude structure of a periodic signal, independently of time, and the fundamental frequency of the 

signal, provided that the waveform shape is locally preserved. A third aspect that contributes to defining 

the particular waveform shape of a periodic signal involves the relationships between the starting phases 

of the different harmonics, ϕℓ . Ideally, it would be interesting to characterize the waveform shape of a 

given periodic signal based on a normalized phase-related feature vector that, similar to the magnitude 

related feature vector, is independent of time and the fundamental frequency. This paper aims to show 

that such a time-shift invariant phase-related feature exists and that it can be extracted using fairly 

conventional spectrum analysis. Moreover, it can be modeled in simple and insightful ways. To this 

end, two problems need to be addressed. The first one involves estimating the harmonic starting phase 

values, ϕℓ , from a short segment of x(t) that is representative of the periodic signal. By ‘representative’, 

we mean that the short segment contains a few periods with a similar waveform shape, but its duration 

is not related to the period of the periodic signal. The second aspect involves establishing a model based 

on the estimated harmonic starting phases, which, when combined with harmonic magnitude 

information, helps to fully explain a given waveform shape in a way that is time-shift invariant and 

independent of Ω0. The next section further discusses these challenges from a practical perspective and 

motivates a paradigm in harmonic signal processing oriented toward the harmonic magnitude and phase 

structure, greatly facilitating signal modeling, transformation, and synthesis. 

1.3. A Practical Approach to Harmonic Signal Processing The problem we address falls within the 

realm of spectrum estimation using Fourier analysis. Given our aim for practical signal processing that 

is suitable for real-time operation on low-cost platforms, we highlight simple technical approaches that 

utilize the discrete Fourier transform (DFT). This choice allows for the benefit of efficient realization 
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algorithms (e.g., the FFT [15]). In addition, we exclude non-causal or iterative processing in order to 

accommodate real-time operation on low-cost platforms. Thus, in a practical setting, simple spectrum 

estimation typically implies three operations: (1) sampling, (2) time–frequency (T-F) transformation, 

and (3) frequency, magnitude, as well as phase estimation: 1. A discrete-time version of the signal 

represented by Equation (1) is first obtained using a convenient sampling frequency (FS), i.e., we have 

the following: 

 

Finally, a suitable estimation procedure is used that takes the spectral coefficients, X[k], as input and 

delivers robust estimates of all the harmonic frequencies, magnitudes, and phases. These simple 

spectrum estimation steps enable the identification of important harmonic parameters such as the 

normalized fundamental frequency, ω0 = Ω0TS. On the other hand, if the parametric representation of 

harmonic magnitudes and phases is done in such a way that it does not depend on time or the 

fundamental frequency, it paves the way for a harmonic signal processing paradigm that promotes 

simplification, flexibility, and even insight in algorithms. In fact, in many applications, such as speech 

enhancement and time-scale or pitch-scale modification of speech [3], and special effects in singing and 

music [2], harmonic sinusoids Signals 2024, 5 844 are individually modified in terms of their frequency, 

magnitude, and phase trajectories, as suggested by Figure 1. 

 

However, this approach requires careful unwrapping of the phases of all harmonics such that their 

modifications are correct and do not suffer from the errors that may result from the wrapped phase 

representation in the interval [−π, π]. In addition, phase unwrapping, which is carried out for all 

harmonics on an individual basis and in a ‘horizontal’ manner, i.e., along the time axis, is itself prone 

to estimation errors. The most critical aspect of this approach, however, is that it is not insightful, i.e., 

it does not capture the overall, or holistic, harmonic phase structure, which means that, most likely, it 

does not explicitly control it. As a result, although phase coherence may be obtained on an individual 

sinusoidal basis, ‘vertical’ coherence may not be controlled and artifacts may result, the most common 

being known as ‘phasiness’ [16]. A more convenient paradigm in harmonic signal processing is 

represented by the block diagram illustrated in Figure 2. 

According to this paradigm, harmonic magnitude and phase models are extracted that represent the 

holistic harmonic structure (or ‘vertical’ structure) in a way that is time-shift invariant, and independent 

of the fundamental frequency. This approach not only promotes insight into the harmonic signal 

structure but also greatly facilitates signal transformation. For example, the magnitude model (MM) 

and the phase model (PM) may change arbitrarily or may be interpolated in simple ways. Or, if the 

waveform shape is to be preserved, they may remain unchanged, and only the changes in the synthesis 

affect the fundamental frequency parameters (ωS 0 , A S 0 , ϕ S 0 ). In addition, the synthetic phase ϕ S 

0 may be decoupled from the original phase ϕ0 since it can be easily synthesized using the value of ωS  
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2. Robust DFT-Based Phase Estimation of Individual Sinusoids 

This section focuses on the estimation of the initial phases (ϕℓ\phi_{\ell}ϕℓ) of individual sinusoids in 

a harmonic signal, as expressed in equation (1). The process begins after the signal undergoes simple 

uniform sampling, as indicated in equation (3), followed by multiplication by a window function 

w[n]w[n]w[n], leading to a transformation into the discrete-frequency Fourier domain, as shown in 

equation (4). As detailed in Section 1.1 and illustrated in Figures 1 and 2, we utilize a pre-existing 

harmonic analysis framework that not only provides an accurate estimate of the fundamental frequency 

(ω0\omega_0ω0) but also the harmonic magnitude estimates (AℓA_{\ell}Aℓ). In our simulations within 

this paper, we work with ground-truth test signals where these parameters are known in advance, which 

is equivalent to assuming error-free estimation of these parameters. 

When examining the magnitude spectrum of a harmonic signal, it is tempting to estimate the starting 

phases of the harmonics by directly taking the phases of the DFT spectral lines (or DFT bins) that 

correspond to the local maxima in the magnitude spectrum. Specifically, if X[k]X[k]X[k] denotes the 

Fourier spectrum of the windowed harmonic signal, with k=0,1,…,N−K. However, this approach is 

incorrect because phase estimation requires considering the specific nature of the time-frequency 

transformation, the characteristics of the window function, and the relationship between each spectral 

peak in the magnitude spectrum and the fundamental frequency. 

 

One of the key contributions of this paper is the demonstration that phase estimation does not 

necessarily depend on the accurate frequency estimation of individual sinusoids. As noted by Rife and 

Boorstyn, the most practical DFT-based frequency estimators use a two-step approach: first, a coarse 

search followed by a fine search. The coarse search is straightforward, involving peak picking, while 

the fine search step determines the accuracy of the frequency estimation. Typically, sinusoidal 

magnitude estimation is reliant on the fine search step in frequency estimation, meaning that the 

accuracy of magnitude estimation is tied to the precision of frequency estimation. However, this section 

establishes that phase estimation is not heavily influenced by the fine search step in frequency 

estimation. Instead, its accuracy is primarily determined by the signal-to-noise ratio (SNR) of the signal. 

 

To demonstrate these principles, we consider six distinct cases, each resulting from the combination of 

two different DFT-based filter banks and three different window functions. For simplicity and to 

facilitate comparisons, we restrict our analysis to the examination of a single harmonic sinusoid, as 
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described in equation (1). After uniform sampling as outlined in equation (3), the signal is represented 

and processed accordingly. 

 

 

Despite being usable, this result presents one practical difficulty since it requires that the fractional 

frequency (∆ℓ ) be estimated as accurately as possible [5,18]. This means that frequency estimation 

errors may propagate to the phase estimation. In order to avoid this, a more robust approach is available 

if, instead of estimating phase with respect to the origin of the time segment, estimation is performed 

with respect to the group delay of the DFT filter bank. Given that the window is symmetric, the group 

delay is constant and given by τ = (N − 1)/2. Therefore, using this result and (6) and (9), we obtain the 

following: 

It can be seen that the estimation error distribution is consistent with the relative magnitudes of adjacent 

spectral bins as illustrated in Figure 4. In fact, when ∆ℓ approaches −0.5, or 0.5, the cumulative error 

increases relative to the case when ∆ℓ = 0, which is a consequence of the fact that the magnitudes of 

two adjacent spectral lines become comparable and significantly lower than the maximum value they 

can reach (when ∆ℓ = 0), which not only exacerbates leakage effects but also increases vulnerability to 

the noise influence. Due to the specific frequency response of the rectangular window, as Figures 3 and 

4 highlight, then, when ∆ℓ = 0 and the SNR is infinity, the spectral leakage is zero, and the phase is 

estimated without error. The Matlab code generating Figure 5 is available (estimate 

PHASE_DFT_rect.m), which facilitates experimentation with other values of N, ℓ, or SNR. 
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2.2. DFT and the Sine and Shifted Hanning Windows Other windows that provide better main-to-side 

lobe attenuation compared to the rectangular window are frequently used in spectrum estimation and 

FIR filter design [15]. Although standard Hamming or Hanning windows could be used in our analysis, 

we employ two related windows that are particularly significant in perfect reconstruction filter banks 

[19,20], such as those that are frequently used in audio coding and general analysis synthesis [21]. One 

window is known as the sine window and is defined as follows: 

 

Although this figure resembles Figure 4, two important aspects are worth noting. First, the side lobe 

attenuation decay (not shown in these figures) is stronger for the sine window, when compared to the 

rectangular window [5]. Second, because the main lobe of the frequency response of the sine window 

is wider than the main lobe of the rectangular window, this means that when ∆ℓ is such that the 

magnitudes of the spectral lines k = kℓ − 1 and k = kℓ become comparable, or the magnitudes of the 

spectral lines k = kℓ and k = kℓ +1 become comparable, these magnitudes are closer to the maximum 

value they can reach (which takes place for ∆ℓ = 0.0) than what happens for the rectangular window. 

These concurrent reasons make it that relative to the case of the rectangular window, phase estimation 

using the sine window is likely to be more immune to the noise influence and to suffer fewer leakage 

effects. This can be confirmed by making a simple study on the phase estimation error, as it was 

described in the previous subsection for the rectangular window. Using the same simulation conditions, 

and the same phase estimation function (Equation (10)), we obtain the cumulative phase estimation 

error results that are illustrated in Figure 7. When compared to the results in Figure 5, it can be 

concluded that phase estimation appears to be more accurate when the sine window is used, especially 

when the SNR is high, which is a natural consequence of the smaller leakage caused by this window. 

Results are similar if the shifted Hanning window is considered instead. As we shall see in Section 2.5, 

more informative conclusions will emerge from a study of the phase estimation error variance 

http://www.ijama.in/


                                                            International Journal of Advanced Multidisciplinary Application | IJAMA 
                                                                                                                              Volume 1 Issue 4 Dec 2024  

                                                                                                                                  ISSN No: 3048-9350  
 

www.ijama.in 

Page | 46 

 

 

Figure 8 displays representative results regarding bias. Results reveal that in all six cases, bias reduces 

as the SNR increases, as expected. However, there is not a specific combination of DFT-based filter 

bank and window that stands out. This remains true even after multiple runs of the simulations, although 

a relative degradation can be observed that persists for the tested rectangular window context (i.e., DFT 

filter bank and rectangular window) under more adverse ∆ conditions (i.e., when ∆ approaches −0.5 to 

0.5), which is easily explained by the poor leakage characteristics of the rectangular window. 

 

Figure 8. Mean over 100 Monte Carlo runs of the phase estimation error when N = 128, ℓ = 13, and 

when ∆ takes on two extreme values depending on the estimator. 

In general, it can be concluded that bias is fairly low, in the order or less than 0.001 radians for SNR 

equal to or larger than 2.5 dB. This represents less than 0.016% of the 2π dynamic range. The most 

significant results regard estimation error variance and are shown in Figure 9. It is an interesting and 

somewhat unexpected outcome that the rectangular window gives rise to the best results when the tested 

∆ conditions are more favorable (i.e., when ∆ = 0.0), and to the worst results when the tested ∆ 

conditions are more adverse (i.e., when ∆ = −0.49). In the former case, the performance reaches the 

CRLB because in that ideal case, there is no leakage, as already noted at the end of Section 2.1, which 

means that the error variance is entirely due to noise contamination. It should be noted that in practice, 

this rarely happens with real-world, natural, signals as it is quite unlikely that the analyzed frequencies 
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are exactly aligned with the center frequencies of the sub-bands of the DFT-based filter bank. In the 

latter case, the performance shown by the same estimator is quite poor, which reveals that, in that case, 

leakage effects due to the rectangular window are quite strong, as the results in Figures 5 and 8 easily 

anticipate. In particular, the performance becomes asymptotic when the SNR exceeds 10 dB, which is 

commensurate with the known main-toside lobe attenuation of the rectangular window, in the order of 

13 dB [15]. The performance of the sine and shifted Hanning windows fall in between the two extreme 

cases due to the rectangular window. In particular, for the same DFT-based filter bank and ∆ conditions, 

the error variance performance of the sine window clearly exceeds that of the shifted Hanning window 

in the sense that a closer approximation to the CRLB is reached. This is more evident under the more 

favorable ∆ test conditions (e.g., when ∆ = 0.5) than under the more adverse ∆ test conditions (e.g., 

when ∆ = 0.01). A possible explanation may be linked to the relationship between the main lobe width 

of the magnitude of the frequency responses of those two windows, the relative prominence of the 

spectral coefficients inside that main lobe, the association with the discrete frequencies defining the 

different DFT channels (or sub-bands), and the near-end and far-end leakage characteristics of each 

window. The most impactful implication of these results is that under more general test conditions, the 

phase estimation error performance of the sine window is not only closer to the CRLB but also offers a 

lower deviation when signal conditions are more adverse. For these reasons, it can be considered that 

the performance of the sine window is better behaved and, thus, it will be used in the remainder of this 

paper. 

 

Figure 9. Variance of the phase estimation error when N = 128, ℓ = 13, and when ∆ takes on two extreme 

values depending on the estimator. The Cramér–Rao lower bound is also represented although it is not 

too visible since it is overlapped by the DFT-RECT results when ∆ = 0.0. 

 

Figure 10. Two FM deviation cases characterizing test signals: FM = 2.5 Hz (solid line) and FM = 

0.25 Hz (dashed line). 
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The sawtooth waveform is illustrated in Figure 11 for two noise contamination scenarios that we 

consider in our simulations: when it is mild (SNR = 30 dB), and when it is strong (SNR = 10 dB). 

 

Figure 11. Illustration of the influence of noise on the sawtooth test signal when SNR = 30 dB (top), 

and when SNR = 10 dB (bottom). 

DFT-based non-parametric spectrum estimation techniques are commonly used to analyze, represent, 

and interpret the spectral properties of a given signal for which no strong assumptions are made. Given 

that those spectral properties can be characterized in terms of magnitude and phase, typically, 2D plots 

and 3D plots can be used in each case, although only seldom in the case of phase representation. In the 

case of the magnitude spectrum, also known as a periodogram, a 2D plot is simply obtained by taking 

the absolute value of the short-time DFT of a windowed region of the signal as a function of frequency. 

This is illustrated, for example, in Figure 15. The graphical representation can be linear or logarithmic, 

either on the horizontal or vertical axis, or on both axes. When the goal is to observe how the magnitude 

spectrum evolves through time, a 3D representation is created by abutting several magnitude spectra, 

next to each other, and Signals 2024, 5 865 where a colormap is used to represent power spectral density 

(PSD). A new magnitude spectrum is obtained by sliding the short-time DFT window over the signal 

by a certain hop size that, typically, is less than the window length. Such a 3D representation is known 

as a spectrogram. Usually, the horizontal axis represents time, the vertical axis represents frequency, 

and the third dimension, which is perpendicular to the time–frequency plane, is represented by a specific 

color of a colormap denoting a suitable PSD range. A simple example is illustrated in Figure 26a that 

corresponds to the first four harmonics of a sawtooth signal and whose fundamental frequency is F0 = 

187.34 Hz. 

4. Conclusions: This paper focused on a harmonic signal analysis, modeling, and processing paradigm 

that eases significantly the representation, transformation, and synthesis of harmonic signals, especially 

from the point of view of the phase information. In the first part of the paper, practical DFT-based 

approaches that build on a filterbank perspective were discussed for estimating the starting phases of 

individual sinusoids. Their performance was characterized by considering the CRLB for the variance 

of an unbiased phase estimator. In particular, it was shown that contrary to harmonic frequency and 

magnitude estimation, accurate phase estimation depends only on ‘coarse search’ and not on ‘fine 

search’, which makes the estimation more robust. Six phase estimation alternatives were studied by 

combining two DFT-based filter banks and three different window functions. Results were explained in 

a reproducible manner. In the second part of the paper, it was shown that the starting phases of individual 

sinusoids that are harmonically related may be converted into a phase-related feature (NRD) that 
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expresses the holistic phase structure of a harmonic signal, has the advantage of being time-shift-

invariant, helps to explain the waveform shape of a quasi-periodic signal, and helps to provide insight 

into the physical process that generates it. Finally, it was shown that the unique information that exists 

in a phasegram resulting from a stationary harmonic signal consists of the starting phase of the 

fundamental frequency and the NRD feature vector. Matlab code (https://github.com/Anibal-

Ferreira/demo_AccPhaseEst, accessed on 1 January 2024) is provided that illustrates the most relevant 

concepts and results that are discussed in the paper. Many application scenarios may benefit from the 

results in this paper paving the way for new research results, namely speech coding, pitch, and time-

scale modification of speech, singing, audio, and music; speech enhancement; whispered-speech to 

voice speech conversion and voice rehabilitation; audio forensics; physiological signal analysis and 

diagnosis (e.g., using ECG signals); and monitoring of the operation of mechanical systems using 

sound. 
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