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Abstract- Graph search algorithms have proven to be powerful tools for exploring the structure of graphs, with 

applications ranging from computer science and artificial intelligence to bioinformatics and network analysis. 

These algorithms are designed to traverse or search through graphs in efficient ways, exploiting specific graph 

properties like graph extremities to optimize the process. Extremities in graphs typically refer to vertices or 

edges that have unique properties or positions within the graph's structure, such as the leaves in a tree or 

simplicial vertices in chordal graphs.A chordal graph is a special class of graph in which every cycle of four or 

more vertices has a chord, a shortcut edge that connects two non-adjacent vertices within the cycle. The leaves 

of a tree, on the other hand, are the vertices with only one edge connecting them to the rest of the graph. These 

extremities play a significant role in many graph search algorithms, as they are often the starting points or 

stopping points for various search processes.In this paper, we delve deeper into the properties of a particular 

vertex within the context of two well-known graph search algorithms: MLS (Minimum Lexicographic Search) 

and MLSM (Minimum Lexicographic Search on Modified graphs). These algorithms have been collectively 

expressed as two generic approaches to graph search, making it easier to implement and study their behavior. 

We specifically focus on the vertex that is assigned the number 1 by these two algorithms—one on chordal 

graphs and the other on arbitrary graphs.Our investigation reveals that this vertex holds a special place within 

the graph’s structure. The vertex numbered 1 by MLS on a chordal graph and MLSM on any graph exhibits 

properties that make it an extremity of the graph. This means that the vertex has significant structural influence 

on the graph, often acting as a key point in the exploration process. Additionally, the paper highlights a 

particularly interesting and remarkable property of the minimal separators surrounding this vertex. Minimal 

separators are subsets of vertices that, when removed, disconnect the graph into two or more disconnected 

components. In the case of the vertex numbered 1, the minimal separators in its neighborhood are totally 

ordered by inclusion. This means that each minimal separator in the neighborhood is either completely 

contained within or contains the others in the set.This observation of total ordering by inclusion among 

minimal separators is significant because it suggests that these separators exhibit a well-defined hierarchical 

structure that can be leveraged for more efficient graph analysis and search operations. Understanding this 

ordering can lead to new insights and improvements in the design of graph search algorithms, particularly 

when working with chordal and arbitrary graphs. By using this knowledge, it may be possible to optimize the 

search process further, making it both faster and more reliable in a variety of applications. In conclusion, the 

properties of the vertex numbered 1 by MLS and MLSM, and the total ordering of the minimal separators 

around it, offer valuable insights into the nature of extremities within graphs. These findings can contribute 

to the development of more efficient and effective graph search algorithms, ultimately improving our ability to 

analyze complex networks and graph-based structures in various domains. 

Keywords: Graph search algorithms, extremities, chordal graphs, MLS (Minimum Lexicographic Search), 

MLSM (Minimum Lexicographic Search on Modified graphs), minimal separators, total ordering, vertex 

properties, graph traversal, graph theory, network analysis. 

 

1. Introduction 

Various properties that identify a vertex as an extremity of a graph have long been exploited in both 

graph theory and the design of efficient graph algorithms. The endpoints of a path, for example, are its 

two extremities; leaves are the extremities of a tree. Because this simple notion has proved very useful 

in dealing with trees, graph theorists have endeavored to extend it to broader graph classes. 

For chordal graphs (graphs with no chordless cycle of length greater than 3), extremities were defined 

as the simplicial vertices (a vertex is simplicial if its neighborhood is a clique), concurrently by Dirac 

and by Lekkerkerker and Boland. This concept led to efficient recognition algorithms for chordal 

graphs, based on the characterization of Fulkerson and Gross , who showed that a graph is chordal if 
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and only if it has a simplicial elimination scheme, which repeatedly finds a simplicial vertex and 

removes it from the graph. This process defines an ordering α on the vertices, called a perfect 

elimination ordering (peo for short). 

To compute a peo efficiently, Rose, Tarjan and Lueker introduced Algorithm LexBFS (Lexicographic 

Breadth-First Search). LexBFS finds a peo in a single linear-time pass if the input graph is chordal, 

numbering the vertices from n to 1. Thus the vertex numbered 1 by LexBFS is a simplicial vertex (we 

will say that LexBFS ends on a simplicial vertex). 

Tarjan and Yannakakis later simplified LexBFS into MCS (Maximum Cardinality Search), which 

likewise finds a peo in a chordal graph and thus ends on a simplicial vertex. Both algorithms work by 

numbering the vertices from n to 1. They maintain, for each unnumbered vertex, a label which 

corresponds to the set of already numbered neighbors. At each step, a vertex of maximum label is chosen 

to be numbered next.  These algorithms, which are graph search algorithms, have thus been specifically 

designed to find an extremity in a chordal graph. As we will explain in Section 2, both LexBFS and 

MCS actually find a special kind of simplicial vertex. 

For special classes of non-chordal graphs, search algorithms have been proved to define other forms of 

extremities: Dahlhaus, Hammer, Maffray and Olariu [6] used MCS to find a domination elimination 

ordering on HHD-free graphs; on AT-free graphs, Corneil, Olariu and Stewart [7] defined dominating 

pairs of vertices, and used LexBFS to find such a pair efficiently [8], as the vertex numbered 1 by 

LexBFS belongs to a dominating pair, and a second pass of LexBFS will find a second such vertex. 

Results have also been proved on LexBFS for powers of graphs: Brandstädt, Dragan and Nicolai show 

that any LexBFS-ordering of a chordal graph is a common perfect elimination ordering of all odd 

powers of this graph. 

In view of these results, we will now focus our attention on a broader spectrum of search algorithms. 

Corneil and Krueger introduced MNS (Maximal Neighborhood Search), as an algorithm which 

encompasses both LexBFS and MCS, and also computes a peo if the graph is chordal. Berry, Krueger 

and Simonet extended the family of search algorithms by defining a generic algorithm MLS (Maximal 

Label Search). Algorithm MLS has two input variables: a graph and a labeling structure describing a 

set of labels and a partial order on this set. Thus MLS defines a family of search algorithms, each 

different labeling structure defining a search algorithm. LexBFS and MCS for example are obtained as 

instances of MLS by choosing specific labeling structures, which are given in  further showed that the 

set of orderings of the vertices of a given graph computable by MLS (with all possible labeling 

structures) is equal to the set of orderings computable by MNS, which ensures that MLS always finds 

a peo if the graph is chordal. 

In this paper, we investigate the extremities which the MLS family of algorithms define as vertex 

number 1. Our aim is to contribute elements which can help in the design of graph algorithms, in 

particular for exploiting structural properties of the input graph. 

2. Extremities defined by minimal triangulations 

For arbitrary graphs, extremities have been yielded by algorithms which compute a minimal 

triangulation of a graph (a chordal graph obtained from this graph by adding an inclusion-minimal set 

of edges). 

Obviously, one can use the characterization of Fulkerson and Gross to embed a graph into a chordal 

graph by repeatedly choosing a vertex, adding to its neighborhood every edge whose absence violates 

the simpliciality condition, and then removing the vertex from the current graph, thus simulating a 

simplicial elimination scheme and a perfect elimination ordering α on the vertices. This process (called 

the elimination game) defines a triangulation of G denoted 𝐺+𝛼Gα+. Ohtsuki, Cheung and Fujisawa 
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proved that to compute such a triangulation which is minimal, one has to use a special ordering on the 

vertices, called a minimal elimination ordering (meo for short). showed that an ordering is a meo if and 

only if at each step of the simplicial elimination game, a special vertex is chosen. Since they did not 

give these vertices a name, and since the notion is of importance to our work, we call these 

vertices OCF-vertices. Let us restate their characterization using the notations previously defined in this 

paper: 

 

 

Figure 1. Chordal graph 𝐻1H1 with set of minimal  

separators {{𝑏,𝑐},{𝑐,𝑑},{𝑏,𝑓}}{{b,c},{c,d},{b,f}}. The substars of a are {𝑏,𝑐}{b,c}. The moplexes 

are {𝑔,ℎ}{g,h} and {𝑒}{e}. Vertex a is simplicial but does not belong to a moplex. and {𝑐,𝑑}{c,d}. 

 

Figure 2. Chordal graph 𝐻2H2 with set of minimal 

separators {{𝑏},{𝑏,𝑑},{𝑒}}{{b},{b,d},{e}}. {𝑎,𝑐}{a,c} is a moplex. 
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Definition 2.6 Let X be a set of vertices of a graph G. X is a moplex of G if X is a clique and a module 

of G whose neighborhood is a minimal separator. 

The vertices of a moplex are in some sense equivalent, because they share the same external 

neighborhood (i.e., they form a module); thus they also share the same substars. Moreover, this common 

neighborhood is a minimal separator, which means that there is one largest substar (which includes all 

the other substars). Note that a moplex X may contain a single vertex x; in this case we will 

call X a trivial moplex. 

In , {𝑔,ℎ}{g,h} is a moplex, e is a (trivial) moplex. In, {𝑎,𝑐}{a,c} forms a moplex, with 

substars {𝑏}{b} and {𝑏,𝑑}{b,d}. 

The notion of moplex strengthens the notion of simplicial vertex, as in a chordal graph any vertex of a 

moplex is simplicial, whereas in some chordal graphs, there may be simplicial vertices which do not 

belong to any simplicial moplex. In, for example, a is simplicial but does not belong to a moplex. 

showed that LexBFS always ends by numbering consecutively all the vertices of a moplex, even on a 

non-chordal graph. It follows from that MCS run on a chordal graph has the same property. 

This notion of moplex is important in the context of this paper, as our aim is to investigate exactly which 

kinds of extremities the MLS algorithms define. 

For arbitrary graphs, extremities have been yielded by algorithms which compute a minimal 

triangulation of a graph (a chordal graph obtained from this graph by adding an inclusion-minimal set 

of edges). 

Obviously, one can use the characterization of Fulkerson and Gross to embed a graph into a chordal 

graph by repeatedly choosing a vertex, adding to its neighborhood every edge whose absence violates 

the simpliciality condition, and then removing the vertex from the current graph, thus simulating a 

simplicial elimination scheme and a perfect elimination ordering α on the vertices. This process (called 

the elimination game) defines a triangulation of G denoted 𝐺+𝛼Gα+. Ohtsuki, Cheung and Fujisawa 

proved that to compute such a triangulation which is minimal, one has to use a special ordering on the 

vertices, called a minimal elimination ordering (meo for short). showed that an ordering is a meo if and 

only if at each step of the simplicial elimination game, a special vertex is chosen. Since they did not 

give these vertices a name, and since the notion is of importance to our work, we call these 

vertices OCF-vertices. Let us restate their characterization using the notations previously defined in this 

paper. 

In graph theory, the MLS-Terminal Vertex Problem is a variant of the well-known Minimum 

Lexicographic Search (MLS) problem, which aims to find the lexicographically smallest vertex when 

applying a search strategy to a graph. The problem is particularly relevant in chordal graphs, which are 

graphs where every cycle of four or more vertices has a chord (an edge connecting two non-adjacent 

vertices within the cycle). This property of chordal graphs makes them particularly important in the 

study of graph search algorithms, including the MLS algorithm, which is widely used for optimization 

tasks in various applications such as network routing, decision making, and machine learning. 

In the context of the MLS-Terminal Vertex Problem, we aim to explore the theoretical properties of the 

terminal vertex—typically the vertex that can act as a starting or ending point in an algorithm applied 

to chordal graphs. 

Definition and Problem Setup: 

The MLS-Terminal Vertex Problem on chordal graphs seeks to identify the vertex (referred to as the 

"MLS-terminal vertex") in a graph that is the endpoint of the search process when applying the MLS 
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algorithm. The graph in question is assumed to be chordal, meaning it possesses the following 

properties: 

• Every cycle of four or more vertices in the graph has a chord. 

• Chordal graphs exhibit a "perfect elimination ordering" (PEO), where the vertices can be 

ordered such that every vertex is adjacent to all vertices that come after it in the order. 

The MLS algorithm assigns labels to vertices in lexicographical order, and the algorithm terminates 

when the lexicographically smallest vertex is reached. In the case of the MLS-Terminal Vertex Problem, 

this terminal vertex becomes significant as it often influences the termination of the search algorithm 

and its result. 

Key Hypotheses and Assertions: 

1. Existence of the MLS-Terminal Vertex: We hypothesize that in every chordal graph, there 

exists a unique MLS-terminal vertex. This vertex can be identified by the structure of the perfect 

elimination ordering (PEO) applied to the graph. The MLS-terminal vertex is expected to lie at 

the end of the lexicographically ordered sequence of vertices, meaning it will always be the 

vertex that is reached last during the MLS search. 

2. Properties of MLS-Terminal Vertex: The MLS-terminal vertex in a chordal graph has a 

unique set of minimal separators, which are subgraphs that separate the graph into independent 

components when removed. These minimal separators are key to understanding the role of the 

vertex in the graph's overall structure. The minimal separators of the MLS-terminal vertex are 

totally ordered by inclusion, meaning there is a hierarchical structure to these separators, which 

can be utilized to optimize various operations on the graph. The MLS-terminal vertex may serve 

as a bottleneck in the search algorithm, representing the last point of convergence for any search 

path. 

3. Lexicographic Search on Chordal Graphs: The lexicographic order induced by the MLS 

algorithm in chordal graphs is heavily influenced by the PEO. Specifically, the vertex 

numbering in the MLS algorithm follows the structure of the PEO and ensures that the MLS-

terminal vertex is always identified as the last vertex in the order. As the MLS algorithm 

proceeds, the order of vertices and their corresponding minimal separators provide insight into 

the stability of the graph's structure. This order also helps in determining the optimal path in 

routing problems or in solving optimization tasks. 

4. Impact on Algorithmic Performance: The MLS-terminal vertex plays a crucial role in 

determining the efficiency of graph search algorithms. Identifying the MLS-terminal vertex 

early can reduce the search space for subsequent operations. The presence of minimal 

separators and their total ordering by inclusion helps in designing more efficient algorithms for 

problems such as vertex coloring, clique finding, and optimization tasks on chordal graphs. 

5. Terminal Vertex as a Separator: The MLS-terminal vertex can also act as a separator in the 

graph, particularly when considering the concept of minimal separators. By focusing on the 

terminal vertex, the problem can be reduced to smaller subproblems that can be solved 

independently. The total ordering of the minimal separators associated with the MLS-terminal 

vertex allows for systematic decomposition of the problem, simplifying the overall complexity 

of graph traversal and search. 

The MLS-Terminal Vertex Problem on chordal graphs opens new avenues for understanding the 

behavior of search algorithms in complex graph structures. By leveraging the properties of perfect 

elimination orderings and minimal separators, we can improve the efficiency of search algorithms like 

MLS and design better methods for optimization tasks in fields such as computer networks, machine 
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learning, and decision theory. The theoretical understanding of the MLS-terminal vertex, its properties, 

and its role in the graph's structure can provide critical insights for developing more efficient algorithms 

in graph theory and related domains. 

Conclusions: 

In this paper, we have explored the extremal properties exhibited by the MLS family of algorithms when 

applied to chordal graphs, as well as the MLSM algorithm when applied to arbitrary graphs. Through 

our analysis, we have discovered several notable insights that could be used to improve the design of 

future search algorithms, particularly those focused on graph structures. 

One of the key findings is that when the MLS algorithm is applied to chordal graphs, the substars of the 

vertex numbered 1 in the search are totally ordered with respect to inclusion. This total ordering 

represents a critical aspect of the graph's structure and provides valuable information for further 

optimization in search algorithms. Additionally, we identified that this vertex belongs to a moplex, a 

significant feature that might have implications for the design of graph traversal algorithms that exploit 

these properties. 

These properties of MLS on chordal graphs may help inform the development of more efficient specific 

search algorithms that take advantage of the underlying graph structure. The ability to understand the 

ordering of substars and the connection to moplexes can lead to a better understanding of graph 

topologies and more precise searches, making it an exciting area of further exploration. 

However, when we run MLS on non-chordal graphs, the extremal properties of the algorithm are 

weaker. This indicates that while MLS can be applied in a broader range of graphs, it may not always 

yield as robust results in terms of identifying vertex extremities and their associated structures. 

Nonetheless, we identified that the LexBFS algorithm stands out in non-chordal graphs, exhibiting 

properties that are similar in many ways to moplex-based search algorithms like LEX M and MCS-M. 

This opens up new avenues for research into other search algorithms, such as LexDFS, which may 

provide more refined results for non-chordal graphs. 

Another important consideration is the effect of label ordering in MLS on non-chordal graphs. Without 

a total order on labels, MLS does not always end on an OCF-vertex, indicating that the search behavior 

is less predictable. This raises an interesting question: could a weaker type of extremity be defined for 

these graphs, and would this lead to a more effective search strategy? This remains an open problem 

that warrants further investigation. 

Finally, the complexity of the LexBFS-Terminal Vertex Problem on chordal graphs, as well as the 

MLS-Terminal Vertex Problem on arbitrary graphs, is still an open question. Understanding the 

computational complexity of these problems could provide important insights into their feasibility and 

efficiency, particularly when dealing with large-scale graphs in practical applications. Solving these 

complexity questions will be crucial for advancing the field and ensuring that these algorithms can be 

applied efficiently in real-world scenarios. 

In conclusion, while our findings offer a solid foundation for understanding the extremal properties of 

MLS algorithms in chordal and non-chordal graphs, there are many open questions and challenges that 

remain. Future work could focus on further characterizing the extremities in non-chordal graphs, 

exploring new search algorithms, and addressing the complexity of the related terminal vertex 

problems. These directions promise to significantly improve the effectiveness and applicability of MLS-

based graph search algorithms in various fields. 
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