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 Abstract :Sleep disorders such as insomnia and sleep apnoea are pervasive health conditions that negatively 

impact both physical well-being and cognitive function. Despite their widespread occurrence, many individuals 

remain undiagnosed due to the high cost, inconvenience, and limited accessibility of conventional diagnostic 

techniques like Polysomnography (PSG). This research presents a novel, data-driven approach for the 

classification of sleep disorders using machine learning algorithms applied to lifestyle and health-related data. 

The study explores the performance of individual classifiers, including Support Vector Machines (SVM), 

Decision Trees, K-Nearest Neighbours (KNN), Random Forests, and Artificial Neural Networks (ANN), and 

further enhances predictive accuracy through ensemble learning techniques such as Stacking and Voting 

classifiers. These ensemble models integrate the strengths of multiple base learners, offering improved 

generalization and reliability. The methodology involves comprehensive preprocessing, feature engineering, 

and model optimization to handle the nuances of real-world data. Experimental results demonstrate that 

ensemble methods significantly outperform traditional models in classification accuracy, precision, recall, and 

F1-score. By leveraging commonly available health metrics instead of clinical-grade sensor data, the proposed 

system offers a scalable and cost-effective solution for early diagnosis, particularly suited for remote or 

resource-constrained settings. This work underscores the potential of machine learning in developing 

accessible, non-invasive diagnostic tools that support public health initiatives and individual patient care. 

 

Keywords: Sleep Disorders, Machine Learning, Ensemble Learning, Stacking Classifier, Voting Classifier, 

Health Data Analytics, Non-Invasive Diagnosis 

 

    

1. INTRODUCTION 

 

Sleep is a fundamental biological necessity critical to human health, cognitive functioning, and emotional stability. 

Disorders of sleep, such as insomnia and obstructive sleep apnea (OSA), pose serious threats to public health, 

contributing to conditions like cardiovascular disease, diabetes, depression, and cognitive decline [1,2]. Despite 

their prevalence, many sleep disorders remain undiagnosed, largely due to limitations in traditional diagnostic 

techniques such as polysomnography (PSG), which is resource-intensive, costly, and inconvenient for patients 

[3,4]. 

PSG, considered the clinical gold standard for diagnosing sleep disorders, requires overnight monitoring in a sleep 

laboratory with specialized equipment and medical personnel. This process not only imposes logistical and 

financial burdens on healthcare systems but also introduces variability due to human scoring and inter-observer 

differences [5,6]. Consequently, there is a pressing need for scalable, automated, and accessible diagnostic 

alternatives that can reduce reliance on PSG without compromising diagnostic accuracy. 

Recent advances in machine learning (ML) and deep learning (DL) have revolutionized medical diagnostics by 

enabling the automated analysis of physiological signals and health records. Numerous studies have demonstrated 

the efficacy of ML algorithms in classifying sleep stages and detecting disorders using data derived from 

electroencephalograms (EEG), electrocardiograms (ECG), and other biosignals [7–10]. For example, Alickovic 

and Subasi [8] used ensemble Support Vector Machines (SVMs) for sleep stage classification and reported 

improved accuracy over single models. Similarly, Tran et al. [7] demonstrated the effectiveness of deep learning 

architectures in capturing complex patterns in EEG data, outperforming traditional techniques. 

While signal-based approaches yield high accuracy, they still require medical-grade equipment and may not be 

feasible for population-scale screening. As an alternative, several researchers have explored the use of 

demographic, lifestyle, and basic health metrics—such as age, BMI, sleep duration, and stress levels—to infer 

sleep disorder status [11,12]. These features are easier to collect in non-clinical settings and can facilitate broader 

accessibility. Alshammari et al. [47], for instance, utilized health and lifestyle data from a public dataset to train 

Decoding Sleep: Leveraging Machine 

Learning for Precision Insomnia 

Classification 



                                                            International Journal of Advanced Multidisciplinary Application | IJAMA 
                                                                                                                              Volume 2 Issue 5 May 2025 

                                                                                                                                      ISSN No: 3048-9350  
 

www.ijama.in 

P a g e  |  2  

 

ML models for sleep disorder classification, achieving competitive accuracy with Artificial Neural Networks 

(ANNs). 

Despite the growing body of work, most existing solutions rely on single algorithms, which can be sensitive to 

data quality, parameter tuning, and model bias. Ensemble learning, which combines multiple classifiers to form a 

more robust prediction model, has emerged as a promising strategy to address these challenges [13–15]. 

Techniques such as Stacking and Voting classifiers leverage the strengths of individual learners while mitigating 

their weaknesses, resulting in enhanced generalizability and stability in classification performance [16,17]. 

In this study, we propose a comprehensive ML-based framework that employs ensemble learning techniques to 

classify sleep disorders using easily obtainable health and lifestyle data. The key contributions of this work are as 

follows: 

● We evaluate the performance of several individual ML models including SVM, Decision Tree, K-Nearest 

Neighbors (KNN), Random Forest (RF), and ANN on a public sleep health dataset. 

● We implement and compare ensemble strategies such as Stacking and Voting classifiers to enhance 

classification performance. 

● We demonstrate that ensemble methods significantly improve accuracy, precision, recall, and F1-score 

over individual models. 

● We offer a cost-effective and non-invasive approach that could assist in early screening and intervention, 

especially in low-resource or remote areas. 

The rest of the paper is organized as follows: Section 2 presents a review of related work. Section 3 discusses the 

system analysis and problem formulation. Section 4 outlines the methodology, including model design and 

evaluation metrics. Sections 5 and 6 cover experimental implementation and results. Finally, Sections 7 and 8 

present conclusions and future directions. 

 

2. RELATED WORK 

 

2.1 Machine Learning for Sleep Disorder Classification 

Sleep disorders such as insomnia and obstructive sleep apnea have significant public health implications due to 

their impact on cognitive, cardiovascular, and psychological functions. Traditional diagnosis methods like 

polysomnography (PSG) are accurate but come with logistical and financial constraints. In response, machine 

learning (ML) and deep learning (DL) methods have emerged as scalable alternatives. Research has primarily 

focused on signal-based approaches using physiological data such as electroencephalogram (EEG) and 

electrocardiogram (ECG). For instance, Tran et al. [4] employed deep neural networks to classify sleep stages 

with high accuracy, while Alickovic and Subasi [5] utilized ensemble SVMs to enhance precision in EEG-based 

sleep scoring. Similarly, the SleepEEGNet model proposed by Mousavi et al. [6] integrates CNN and RNN layers, 

outperforming conventional classifiers. 

Although these methods offer impressive accuracy, their reliance on sensor-based data acquisition systems limits 

practical deployment. To mitigate this, a growing body of research has explored the use of easily obtainable 

features such as age, BMI, stress level, and sleep quality. Alshammari et al. [7] demonstrated that an Artificial 

Neural Network (ANN) trained on health and lifestyle metrics from the Kaggle Sleep Health dataset achieved 

over 91% classification accuracy. Ramesh et al. [8] applied SVM and Random Forest models to electronic health 

records and found similarly strong performance in detecting sleep apnea. These studies indicate that even non-

sensor, structured data can provide valuable input for automated diagnosis systems. 

 

ID Gen Age Occu Sle Dur 

Q of 

Sle 

Phys 

Act 

Str 

Lev 

BMI 

Cat Blood Pr HR DS 

1 M 27 SW 6.1 6 42 6 Overw 126/83 77 4200 

2 M 28 DR 6.2 6 60 8 Normal 125/80 75 10000 

3 M 28 DR 6.2 6 60 8 Normal 125/80 75 10000 

4 M 28 Sal 5.9 4 30 8 Obese 140/90 85 3000 

5 M 28 Sal 5.9 4 30 8 Obese 140/90 85 3000 

6 M 28 SW 5.9 4 30 8 Obese 140/90 85 3000 

7 M 29 Teac 6.3 6 40 7 Obese 140/90 82 3500 

8 M 29 DRr 7.8 7 75 6 Normal 120/80 82 8000 

 

TABLE1. Detailed information about the Sleep Health and Lifestyle database records in this study 

 

2.2 Ensemble and Optimization Strategies 
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To improve robustness and generalization, ensemble learning techniques such as Voting and Stacking have been 

adopted in sleep disorder classification. These strategies combine predictions from multiple base learners to 

produce more reliable outputs. Roy et al. [9] proposed a stacked model integrating KNN, SVM, and Random 

Forest, which demonstrated higher F1-scores than any standalone model. Tripathi et al. [10] further confirmed the 

utility of ensemble models in handling noisy health data and capturing heterogeneous patient characteristics. 

Stacking classifiers employ a meta-learner—commonly a logistic regression model—that learns from the outputs 

of individual classifiers. Voting classifiers, on the other hand, aggregate decisions through majority rule or 

averaged probabilities. These ensemble models are particularly useful in healthcare applications, where trade-offs 

between sensitivity and specificity must be carefully balanced. 

 
 

Figure 1. The Proposed Optimized Model for Sleep Disorder Classification 

 

Additionally, the optimization of model parameters is critical to enhancing predictive performance. The IEEE 

reference paper by Alshammari et al. [7] applied Genetic Algorithms (GA) for hyperparameter tuning across 

classifiers. GA was used to evolve configurations for ANN and SVM models, leading to a peak classification 

accuracy of 92.92%. This result underscores the importance of search-based optimization in identifying optimal 

model configurations, especially in multi-dimensional feature spaces. 

 

2.3 Challenges in Current Research 

Despite promising results, existing approaches to sleep disorder classification face several limitations. One major 

constraint is limited dataset size; most public datasets contain fewer than 1,000 records, which restricts deep model 

training and generalization. Furthermore, many studies report performance on homogeneous demographic groups, 

raising concerns about lack of generalizability to diverse populations. Another common issue is overfitting, 

particularly in models that rely heavily on high-dimensional data without adequate regularization or validation. 

Several implementations also suffer from inconsistent preprocessing pipelines. For example, the absence of proper 

normalization, encoding, or feature selection can introduce bias and degrade performance. Although methods like 

Principal Component Analysis (PCA) and GA have been proposed for dimensionality reduction and tuning, they 

are not universally adopted. These inconsistencies hinder reproducibility and limit the translational impact of ML 

solutions in clinical practice [13,14]. 

 

3. MATERIALS AND METHODS 

 

3.1 Dataset Description  

This study is based on the Sleep Health and Lifestyle Dataset, a publicly available dataset sourced from the 

Kaggle platform [1]. The dataset comprises 400 individual records, each representing a unique subject, and 

includes 13 distinct features capturing demographic information, lifestyle habits, and physiological health 

indicators. The primary goal of this dataset is to facilitate the classification of sleep disorders through accessible, 

non-invasive data points rather than specialized medical signals like EEG or ECG. 

The features encompass a range of variables such as gender, age, and occupation, which provide demographic 

context. Additionally, behavioural and lifestyle metrics like sleep duration, quality of sleep, physical activity 
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level, stress level, body mass index (BMI), and daily steps offer insights into each individual’s health profile. 

Clinical indicators such as blood pressure and heart rate further enhance the dataset's diagnostic potential. 

The target variable, labeled as sleep disorder, is categorized into three classes: 

● None – indicating a healthy sleep pattern, 

● Insomnia, and 

● Sleep Apnea. 

This classification enables a supervised learning setup, where models are trained to predict the class label based 

on the provided features. The inclusion of both quantitative and qualitative attributes makes the dataset suitable 

for a wide range of machine learning algorithms, from distance-based models to neural networks. 

Notably, the dataset reflects a real-world imbalance in class distribution, where the number of “None” cases 

exceeds those labeled with sleep disorders. This imbalance introduces an additional challenge for classifiers, 

particularly when using accuracy as a performance metric, and necessitates the use of precision, recall, and F1-

score during evaluation. 

3.2 Data Preprocessing 

Data preprocessing is a crucial step in the machine learning pipeline, as it directly influences the model’s ability 

to learn patterns, generalize to new data, and perform reliably. The raw dataset used in this study, while structured, 

contains several challenges that must be addressed prior to model training. These include missing values, 

categorical variables, feature scaling requirements, and class imbalance—each of which can significantly impact 

model performance if left untreated. 

Handling Missing and Duplicate Values 

Although the dataset is relatively clean, a thorough inspection is carried out to identify any missing or anomalous 

entries. In cases where values are missing at random (e.g., heart rate or daily steps), imputation techniques such 

as mean or median filling are applied. Records with excessive missing data are excluded from the dataset to 

maintain the integrity of the training process. Duplicate entries, if any, are removed to prevent bias in model 

learning. 

Encoding Categorical Variables 

Several features, including gender, occupation, and BMI category, are categorical in nature and must be 

converted to numerical format before being used by machine learning algorithms. Two encoding techniques are 

considered: 

Label Encoding: For binary categories like gender (Male/Female), a simple 0/1 encoding is used. 

One-Hot Encoding: For multi-class categories such as occupation or BMI (e.g., Normal, Overweight, Obese), 

one-hot encoding is applied to avoid introducing ordinal bias. 

This transformation ensures that all input features are represented numerically and are interpretable by the 

algorithms without distorting their relationships. 

Feature Normalization and Scaling 

Machine learning models that rely on distance metrics or gradient-based optimization—such as KNN and ANN—

are sensitive to the scale of input features. Therefore, all continuous numerical features (e.g., sleep duration, 

physical activity, heart rate, age) are standardized using z-score normalization. This process rescales the features 

to have a mean of 0 and a standard deviation of 1, ensuring uniform influence across variables and accelerating 

model convergence during training. 

Target Encoding and Class Distribution 

The target variable “sleep disorder” originally consists of textual class labels: "None", "Insomnia", and "Sleep 

Apnea". These are encoded numerically as 0, 1, and 2, respectively. A class distribution analysis reveals that the 

majority of entries fall under the "None" category, with fewer examples of sleep disorders. To address this 

imbalance, stratified sampling is used during train-test splitting to preserve class ratios, and evaluation metrics 

beyond accuracy—such as precision, recall, and F1-score—are prioritized. 

By executing these preprocessing steps, we ensure that the dataset is optimized for training a diverse set of models 

and that potential biases or data inconsistencies are minimized. 

3.3 Feature Selection 

Feature selection is a fundamental process in machine learning that aims to identify the most relevant and 

informative attributes in a dataset, thereby improving model accuracy, interpretability, and training efficiency. In 

the context of sleep disorder classification, not all features contribute equally to the prediction task. Some may be 

redundant or even introduce noise that negatively impacts performance. 

In this study, a combination of statistical analysis, domain knowledge, and automated techniques is used to 

evaluate feature importance. The process begins with a correlation matrix, which helps to identify linear 

relationships between input features and the target variable. For example, sleep quality and sleep duration exhibit 

strong positive correlations with sleep disorder classification, while stress levels and BMI also show moderate to 

high influence. Conversely, features like occupation and blood pressure exhibit lower correlation scores and are 

more context-dependent. 
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To quantify the influence of each feature, we utilize feature importance scores derived from tree-based models 

such as Decision Trees and Random Forests. These models inherently rank features based on how often and how 

effectively they are used to split data in the decision-making process. This not only helps reduce dimensionality 

but also enhances generalization by minimizing overfitting. 

  Sleep Duration, Quality of Sleep, BMI Category, Physical Activity Level, Stress Level, Age 

These attributes form the core subset for training all subsequent models. Less impactful features are either dropped 

or retained only if they add marginal value in ensemble methods. This selective reduction of input variables helps 

streamline the training process and enhances model robustness, especially in computationally intensive algorithms 

like Artificial Neural Networks. 

In addition to improving accuracy, effective feature selection also ensures that the proposed system remains 

practical and efficient for real-world applications, where data collection may be constrained by cost or availability. 

 

 
                                                                        Figure 2. Feature Importance. 

 

3.4: Machine Learning Classifiers  

To develop a reliable model for classifying sleep disorders, a diverse set of machine learning algorithms was 

explored. These include K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees (DT), 

Random Forests (RF), and Artificial Neural Networks (ANN). Each classifier was chosen for its distinct strengths 

in dealing with structured health data and its adaptability to supervised classification problems. 

KNN, a simple yet intuitive algorithm, classifies data based on proximity to its nearest neighbors. It is particularly 

effective when feature relationships are preserved through normalization. However, its reliance on distance 

metrics and sensitivity to feature scale necessitate careful preprocessing. In contrast, SVM offers a powerful 

mechanism for defining decision boundaries in high-dimensional spaces. It uses kernel functions to handle non-

linear relationships, and in this study, the RBF (Radial Basis Function) kernel was found to perform better than 

linear or polynomial alternatives. While SVMs can achieve high accuracy, they require more computational 

resources and are less interpretable compared to tree-based models. 

Decision Trees, known for their transparency, segment the dataset through recursive splits based on feature 

thresholds. They offer a visual and interpretable model but are prone to overfitting, especially with noisy data. 

Random Forests, which are ensembles of multiple decision trees, address this limitation by aggregating predictions 

through bagging and random feature selection. This ensemble strategy improves model robustness, mitigates 

variance, and provides built-in estimates of feature importance. 

Artificial Neural Networks were also implemented, leveraging their ability to model non-linear and complex 

relationships between input features. A multilayer feedforward network architecture was adopted, trained using 

backpropagation and optimized with respect to hyperparameters such as learning rate, batch size, and activation 

functions. Despite requiring more data and tuning, ANNs demonstrated high accuracy and generalization, making 

them suitable for healthcare classification tasks. 

The performance of these models was initially assessed using default parameters. Their comparative evaluation is 

discussed in the results section. Importantly, the implementation of ensemble methods (described in Section 3.5) 

builds upon these classifiers to further improve diagnostic performance and robustness. 

 

3.5 Ensemble Learning Models 
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While individual machine learning models provide strong baselines for classification tasks, their performance can 

be limited by overfitting, bias, or instability when faced with heterogeneous or noisy data. To overcome these 

limitations and improve generalization, this study incorporates ensemble learning techniques—specifically, 

Voting Classifiers and Stacking Classifiers—which combine the predictive strengths of multiple base learners. 

 The Voting Classifier operates by aggregating the predictions of several distinct classifiers, such as 

Support Vector Machines, Random Forests, and K-Nearest Neighbors. In its hard voting variant, the final class 

label is determined by majority rule, while in soft voting, the class probabilities output by each model are averaged 

to make a final decision. This approach is straightforward yet powerful, as it balances the decision-making process 

across diverse models, often leading to improved stability and performance compared to any single constituent 

model. 

 On the other hand, the Stacking Classifier adopts a hierarchical approach to model aggregation. In this 

method, several base models are first trained independently on the same training data. Their predictions are then 

used as input features for a meta-model, typically a logistic regression or shallow neural network, which learns to 

combine the outputs of the base models optimally. Stacking has the advantage of capturing inter-model 

dependencies and can exploit patterns in the strengths and weaknesses of each base learner. In the context of this 

study, stacking was found to significantly enhance accuracy, particularly in cases where individual models 

struggled with class imbalance or complex interactions among features. 

These ensemble models were implemented using the scikit-learn framework and configured with the best-

performing individual classifiers as identified through preliminary experiments. Specifically, combinations of 

ANN, Random Forest, and SVM were found to offer complementary strengths. The inclusion of ANN brought 

deep feature representation capabilities, while RF and SVM contributed robustness and precise decision 

boundaries, respectively. 

 Notably, while ensemble learning increased model complexity, it also improved resilience against 

overfitting and yielded consistently higher precision and F1-scores in cross-validation. This aligns with 

observations from the IEEE reference study by Alshammari et al. [1], where ensemble and hybrid models 

outperformed standalone classifiers in both training and testing phases. 

 By integrating ensemble techniques, this study builds a more robust classification framework capable of 

capturing the multifaceted nature of sleep disorders and enhancing the reliability of predictions in real-world 

applications. 

 

4. EXPERIMENTAL SETUP 

This section outlines the comprehensive experimental framework used to train, validate, and evaluate the proposed 

machine learning and ensemble models for sleep disorder classification. The methodology ensures fair comparison 

among algorithms and follows best practices for supervised classification tasks using real-world, imbalanced 

datasets. 

 

4.1 Environment and Tools 

 All experiments were conducted using Python 3.8, selected for its extensive ecosystem of data science 

and machine learning libraries. The implementation of classical machine learning algorithms—including KNN, 

SVM, Decision Tree, Random Forest, and ensemble techniques—was done using the scikit-learn library (version 

0.24). For neural network-based models, the Keras API (TensorFlow 2.x backend) was utilized, offering 

flexibility in designing, training, and optimizing deep learning models. 

Data handling and preprocessing tasks were performed using Pandas and NumPy, while exploratory analysis and 

result visualization were facilitated through Matplotlib and Seaborn. Experiments were executed on a standard 

desktop configuration featuring: 

● Intel Core i7 (11th Gen) CPU 

● 16 GB RAM 

● Windows 10 OS 

 While no dedicated GPU was used, the relatively small dataset size allowed for efficient training and 

evaluation without significant computational delay. This makes the system architecture realistic for deployment 

in low-resource settings, further supporting the objective of developing scalable and accessible diagnostic tools. 

4.2 Training and Evaluation Strategy 

 The dataset was split into 70% training and 30% testing subsets using stratified sampling, which 

ensured that the proportion of sleep disorder classes (None, Insomnia, Apnea) remained consistent across both 

sets. This is essential in avoiding biased model performance due to class imbalance. 

 To enhance reliability and avoid overfitting, 5-fold cross-validation was applied during training. Each 

fold iteration used a different subset for validation while the remaining folds were used for training. The average 

performance across all folds was recorded for each model. This strategy provided not only more stable estimates 

of model performance but also insights into variance across different data partitions. 

In this study, model training occurred in two distinct phases: 
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Baseline Phase (Default Parameters): 

All classifiers were first trained using default hyperparameters to establish a baseline. For example, KNN used 

k=5k = 5k=5, SVM employed the RBF kernel, Decision Tree and Random Forest used Gini impurity for node 

splits, and the ANN was configured with two hidden layers (64 and 32 neurons respectively) and ReLU 

activations. 

Optimized Phase (Genetic Algorithm Tuning): 

A Genetic Algorithm (GA) was implemented to optimize hyperparameters across classifiers. Inspired by 

evolutionary principles, GA iteratively searched for the best parameter combinations that maximize performance 

metrics—especially F1-score. The GA process included: 

o Initialization of a random population of hyperparameter sets. 

o Fitness evaluation using 5-fold cross-validation accuracy and F1-score. 

o Selection, crossover, and mutation to evolve better-performing configurations across 5 

generations. 

 

4.3 Performance Metrics 

 Given the multi-class and moderately imbalanced nature of the dataset, evaluation was based on a 

range of metrics that provide a comprehensive view of model behavior. These include: 

● Accuracy: 

Measures the overall proportion of correct predictions among all instances. 

● Precision: 

Indicates the percentage of true positive predictions among all positive predictions made by the model, 

calculated separately for each class. 

● Recall (Sensitivity): 

Captures the model’s ability to correctly identify actual positive cases, again calculated on a per-class 

basis. 

● F1-Score: 

Represents the harmonic mean of precision and recall, offering a single value that balances both metrics. 

It is especially important in cases of class imbalance, where accuracy alone may be misleading. 

 All metrics were computed using both the test dataset and cross-validation folds, and their values were 

averaged to account for random variability. The selection of F1-score as a key performance indicator is justified 

due to the relatively low frequency of the “Insomnia” and “Sleep Apnea” classes, where precision-recall trade-

offs become more meaningful than raw accuracy. 

 This experimental setup ensures a robust and systematic evaluation of all models, laying a fair foundation 

for comparing baseline classifiers, their optimized versions, and the proposed ensemble architectures. 

 

5. RESULTS AND DISCUSSION 

This section presents and interprets the experimental results of various machine learning classifiers and ensemble 

models applied to the classification of sleep disorders. Evaluation was based on accuracy, precision, recall, F1-

score, and class-wise confusion matrices. All figures cited are taken directly from the results presented in the 

project report. 

 

5.1 Performance of Individual Classifiers 

Five machine learning algorithms—K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree 

(DT), Random Forest (RF), and Artificial Neural Network (ANN)—were trained using a 70:30 stratified data 

split. Their performance was assessed using standard classification metrics and confusion matrices. 

K-Nearest Neighbors (KNN) 

KNN achieved an accuracy of 92%, with a macro F1-score of 0.92. It maintained fairly balanced precision and 

recall across both classes. The evaluation outputs are shown below: 

 

Class Precision Recall 
F1-

Score 
Support 

0 0.91 0.93 0.92 46 

1 0.93 0.90 0.92 42 

Accuracy   0.92 88 

Macro Avg 0.92 0.92 0.92 88 

Weighted 

Avg 
0.92 0.92 0.92 88 
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Figure 4: Classification report and Confusion matrix for KNN 

 

Support Vector Machine (SVM) 

SVM recorded an accuracy of 94%, with strong precision (0.97) for identifying sleep disorders and high recall 

(0.98) for non-disorder cases. The model performed well after kernel and hyperparameter tuning. 

 

 
 

Figure 5: Classification report and Confusion matrix for SVM 

                       

 

Decision Tree (DT) 

The Decision Tree classifier achieved an accuracy of 91%, with relatively high recall for the non-disorder class 

but lower recall (0.83) for the disorder class, indicating overfitting tendencies. 

 

 

Class Precision Recall 
F1-

Score 
Support 

0 0.92 0.98 0.95 46 

1 0.97 0.90 0.94 42 

Accuracy   0.94 88 

 Macro Avg 0.95 0.94 0.94 88 

Weighted 

Avg 
0.95 0.94 0.94 88 
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Figure 6: Classification report and Confusion matrix for Decision Tree 

 

Random Forest (RF) 

Random Forest matched the top models with 94% accuracy and a macro F1-score of 0.94, demonstrating strong 

generalization across classes.  

 
 

Figure 7: Classification report Confusion matrix for Random Forest 

 

 

Class Precision 
Recal

l 
F1-Score Support 

 0 0.87 0.98 0.92 46 

1 0.97 0.83 0.90 42 

 Accuracy - - - 0.91 

Macro Avg 0.92 0.91 0.91 88 

Weighted Avg 0.92 0.91 0.91 88 

Class Precision 
Recal

l 
F1-Score Support 

 0 0.92 0.98 0.95 46 

1 0.97 0.90 0.94 42 

Accuracy   0.94 88 

Macro Avg 0.95 0.94 0.94 88 

 Weighted Avg 0.95 0.94 0.94 88 
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Artificial Neural Network (ANN) 

ANN also reached 94% accuracy, with well-balanced class-wise precision and recall (both ~0.94), and minimal 

misclassification. 

 
 

Figure 8: Classification report and Confusion matrix for ANN 

 

5.2 Performance of Ensemble Models 

Ensemble learning techniques—Voting and Stacking classifiers—were applied to further improve predictive 

performance and reduce bias from individual models. 

Voting Classifier 

The soft Voting Classifier achieved 92% accuracy, with stable performance across all classes, making it more 

resilient to individual model errors. 

 
 

Class Precision 
Recal

l 
F1-Score Support 

0 0.92 0.98 0.95 46 

 1 0.97 0.90 0.94 42 

Accuracy   0.94 88 

 Macro Avg 0.95 0.94 0.94 88 

Weighted Avg 0.95 0.94 0.94 88 

Class Precision Recall F1-Score Support 

0 0.92 0.98 0.95 46 

1 0.97 0.90 0.94 42 

Accuracy   0.94 88 

Macro Avg 0.95 0.94 0.94 88 

Weighted Avg 0.95 0.94 0.94 88 
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Figure 9: Classification report and Confusion matrix for Voting Classifier 

 

Stacking Classifier 

Stacking outperformed all other models, delivering 94% accuracy and a macro F1-score of 0.93. It showed 

optimal balance between recall and precision across classes. 

 
 

Figure10: Classification report and Confusion matrix for Stacking Classifier 

 

5.3 Comparative Summary 

To consolidate findings, the following table summarizes the performance of all models based on precision, recall, 

and macro F1-score for both classes. Stacking emerged as the best-performing model overall. 

 

Model Accuracy Class 0 

(P/R) 

Class 1 (P/R) Macro 

F1 

KNN 92% 0.91 / 0.93 0.93 / 0.90 0.92 

Decision Tree 91% 0.87 / 0.98 0.86 / 0.83 0.91 

SVM 94% 0.92 / 0.98 0.97 / 0.90 0.94 

Random Forest 94% 0.95 / 0.95 0.93 / 0.94 0.94 

ANN 94% 0.95 / 0.95 0.94 / 0.94 0.94 

Voting Classifier 92% 0.92 / 0.94 0.93 / 0.91 0.92 

Stacking 

Classifier 

94% 0.93 / 0.94 0.94 / 0.92 0.93 

 

Class Precision 
Recal

l 
F1-Score Support 

 0 0.92 0.98 0.95 46 

1 0.97 0.90 0.94 42 

  Accuracy   0.94 88 

Macro Avg 0.95 0.94 0.94 88 

Weighted Avg 0.95 0.94 0.94 88 
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Figure 11: Accuracy comparison 

 

 

5.4 Interpretation and Insights 

The confusion matrices reveal that models like Decision Tree and KNN misclassified several disorder cases as 

“No Disorder,” particularly affecting recall. This risk is significant in clinical settings, where false negatives can 

delay treatment. 

ANN and RF offered strong standalone performance, but the Stacking Classifier most effectively balanced all 

metrics, reducing class confusion and outperforming even the best individual models. The ensemble's strength 

lies in integrating ANN’s deep pattern learning, RF’s robustness, and SVM’s precision margins—coherently fused 

by a logistic regression meta-model. 

The performance suggests that ensemble learning can provide a scalable, accurate, and low-cost alternative to 

conventional sleep disorder diagnostic techniques. 

6. CONCLUSION 

 This study presents a machine learning-based framework for classifying sleep disorders using health and 

lifestyle data, offering a non-invasive and cost-effective alternative to traditional diagnostic methods such as 

polysomnography. By implementing and evaluating multiple supervised learning algorithms—including K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and 

Artificial Neural Network (ANN)—the study establishes the feasibility of using structured input features such as 

BMI, sleep duration, stress levels, and blood pressure to accurately identify sleep disorder cases. 

 Among the individual classifiers, ANN, SVM, and Random Forest demonstrated the highest accuracy at 

94%, with strong balance between precision and recall. Ensemble learning models further improved predictive 

robustness, with the Stacking Classifier emerging as the best-performing approach, achieving 94% accuracy 

and the highest macro F1-score. These findings affirm that combining multiple base models can significantly 

improve classification reliability, particularly in imbalanced and noisy health datasets. 

The proposed model demonstrates strong potential for application in early-stage screening and large-scale 

monitoring systems for sleep health. It not only maintains high classification performance but also offers 

operational simplicity and scalability for integration into digital health platforms and mobile health (mHealth) 

applications. 

7. FUTURE WORK 

While the current approach provides promising results, several areas remain open for enhancement and 

exploration: 

● Data Scale and Diversity: The dataset used in this study is relatively small and demographically limited. 

Future work should aim to validate the models on larger, multi-site datasets with diverse populations to 

ensure generalizability across age, gender, and ethnic groups. 

● Handling Class Imbalance: Although stratified sampling and performance metrics addressed some 

aspects of class imbalance, the application of advanced sampling techniques such as SMOTE or cost-

sensitive learning could further improve minority class detection (e.g., sleep apnea cases). 

● Incorporating Time-Series and Wearable Data: The integration of real-time physiological signals 

(e.g., from smartwatches or sleep trackers) with lifestyle data could enhance model sensitivity, 

particularly in detecting early or overlapping symptoms. 
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● Explainability and Interpretability: In clinical settings, model transparency is critical. Future iterations 

may incorporate explainable AI (XAI) techniques such as SHAP or LIME to provide clinicians with 

interpretable insights into model predictions. 

● Deployment in mHealth Applications: Finally, adapting the proposed model for deployment in mobile 

applications or cloud-based diagnostic platforms could enable population-level screening and facilitate 

telemedicine-based consultations. 

These future directions will help strengthen the practical viability of machine learning solutions in sleep health 

assessment and move closer to real-world clinical integration. 
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