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 Abstract: The increasing sophistication of fake news dissemination poses a growing threat to digital 

information integrity, demanding the deployment of robust and intelligent detection systems. Transformer-

based language models—particularly BERT, RoBERTa, DistilBERT, and GPT-2—have shown promising 

results in detecting misinformation by leveraging deep contextual understanding. However, their vulnerability 

to adversarial attacks reveals a critical weakness in their deployment for real-world applications. This study 

conducts a comprehensive evaluation of these models under both standard and custom adversarial attack 

scenarios to assess their reliability in detecting manipulated or misleading content. Using the 

"newsmediabias/fake_news_elections_labelled_data" dataset, we fine-tune each model and subject them to a 

battery of adversarial techniques, including TextFooler, PWWS, BAE, DeepWordBug, TextBugger, as well as 

novel attack methods designed specifically for this study: Enhanced Substitution Attack (ESA) and 

Comprehensive Text Attack (CTA). We analyze model behavior in terms of accuracy degradation, perturbation 

efficiency, and computational cost. Our findings reveal stark contrasts in model robustness: while RoBERTa 

maintains the highest performance on clean data, it—along with other models—is significantly compromised 

under even subtle adversarial manipulations. The study highlights GPT-2's limitations as a generative model 

repurposed for classification, as it fails catastrophically under most attack conditions. These insights 

underscore the urgent need for adversarial resilience in fake news detection systems and pave the way for 

future research focused on integrating robust defense mechanisms into transformer-based architectures. 

 

Keywords: Adversarial Attacks, Fake News Detection, BERT, RoBERTa, DistilBERT, GPT-2, TextAttack, 

Model Robustness, NLP Security 

 

    

1.  INTRODUCTION  

 The rapid proliferation of misinformation and disinformation through digital platforms poses a 

significant threat to democratic institutions, public health, and societal trust. The evolution of algorithmic content 

recommendation systems has amplified the scale and speed at which fake news spreads, intensifying the need for 

automated and robust detection frameworks. In this context, machine learning models—particularly those rooted 

in natural language processing (NLP)—have become indispensable. Transformer-based architectures such as 

BERT (Bidirectional Encoder Representations from Transformers) [2], RoBERTa [3], DistilBERT [4], and GPT-

2 [5] have redefined the state-of-the-art in text classification tasks, including sentiment analysis, fact verification, 

and fake news detection, due to their capacity to capture contextual semantics and syntactic structures [1, 10]. 

 Early detection efforts primarily employed rule-based or statistical methods, which proved insufficient 

for handling the nuanced semantics of natural language. The introduction of the Transformer architecture [1] and 

its successors—like BERT and RoBERTa—enabled bidirectional contextual understanding, resulting in marked 

improvements in classification accuracy. DistilBERT further optimized BERT’s capabilities for real-time 

applications through knowledge distillation, while GPT-2, a decoder-only model designed for generative tasks, 

has also been adapted for classification using techniques such as LoRA (Low-Rank Adaptation) [36]. 

 Despite these advancements, recent research has highlighted a critical limitation: transformer models are 

highly vulnerable to adversarial attacks. These attacks involve subtle, often imperceptible perturbations to input 

text that preserve human readability but mislead model predictions [11, 13, 15]. Such adversarial manipulations 

are especially dangerous in politically sensitive or high-stakes domains, where misinformation can influence 

public opinion or policy. Frameworks like TextAttack [12] have enabled the systematic generation of these 

adversarial examples using various algorithms—TextFooler [8], PWWS [13], DeepWordBug [14], BAE [31], and 

TextBugger [15]—which target both word-level semantics and character-level structures. Research shows that 

these methods can reduce model performance by over 90%, even with minor textual alterations [11, 15, 35]. 

 Encoder-based models like BERT and RoBERTa generally perform well under clean testing conditions 

but suffer notable performance degradation under adversarial stress [16, 33]. Decoder-only models such as GPT-
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2 exhibit even greater vulnerability due to their unidirectional architecture and lack of specialized objectives for 

discriminative tasks [30, 35]. While defenses such as adversarial training [17], input preprocessing [48], and 

parameter-efficient fine-tuning methods like LoRA [36, 37] have been proposed, they offer only partial mitigation 

and are often underexplored in the context of fake news detection. 

 To address these challenges, this study conducts a comprehensive comparative analysis of four 

transformer models—BERT, RoBERTa, DistilBERT, and GPT-2—when subjected to adversarial attack 

conditions. All models are fine-tuned on the newsmediabias/fake_news_elections_labelled_data dataset [5], 

which includes politically charged news content annotated for veracity. In addition to established attacks from the 

TextAttack library, this research introduces two novel adversarial strategies: Enhanced Substitution Attack (ESA) 

and Comprehensive Text Attack (CTA). These custom attacks are designed to simulate realistic misinformation 

manipulation while rigorously evaluating the semantic robustness and grammatical resilience of detection models. 

 Through systematic experimentation across multiple adversarial dimensions—attack success rate, 

perturbation level, and computational cost—this study aims to: 

1. Identify comparative vulnerabilities of BERT-based and GPT-based models in fake news detection; 

2. Analyze how architectural differences (encoder vs. decoder) influence robustness; 

3. Highlight limitations of existing NLP systems in adversarially rich, real-world environments. 

 By bridging advancements in transformer-based NLP and adversarial machine learning, this work 

contributes to the broader goal of developing security-aware AI systems capable of reliable performance in 

misinformation detection. The findings underscore the urgent need for resilient architectures and adversarial 

defense mechanisms as foundational components in the ethical deployment of AI for safeguarding information 

integrity [41, 42, 43, 46, 47]. 

 

2. METHODOLOGY 

 

 The methodological framework of this study is designed to systematically evaluate the adversarial 

robustness of four leading transformer-based models—BERT, RoBERTa, DistilBERT, and GPT-2—when tasked 

with fake news detection. The approach involves dataset selection and preprocessing, fine-tuning of each model, 

application of standardized and custom adversarial attacks, and performance analysis based on multiple robustness 

metrics. This section presents the first critical component: the dataset and preprocessing pipeline.  

 

              

a. Dataset and Preprocessing 

 As detailed by the dataset authors [21], labels were created using a hybrid approach combining large 

language model evaluations with human-in-the-loop verification. This method balances automation and quality 

control, ensuring high inter-annotator agreement and minimizing bias—crucial for reliable fake news research 

[24, 43]. To prepare the dataset for model fine-tuning, a structured preprocessing pipeline was applied. This 

included cleaning HTML tags, special characters, and excess whitespace, followed by punctuation standardization 

and lowercasing—all essential for consistency, especially in models like BERT and RoBERTa [2, 3]. Tokenization 

was model-specific: BERT and DistilBERT used WordPiece, while RoBERTa and GPT-2 employed Byte-Pair 

Encoding (BPE). Labels were encoded as binary (1 for real, 0 for fake news). 

The data was split into training, validation, and test sets using an 80:10:10 stratified ratio to maintain class 

distribution. Minor oversampling addressed class imbalance during training. Inputs were padded and truncated to 

a maximum length of 512 tokens. Batch sizes were set to 16 for BERT-based models and 8 for GPT-2 due to its 

higher memory demands. These steps ensured uniform, high-quality inputs for all models. 

b. Models and Fine-Tuning 

 To investigate the comparative adversarial robustness of transformer-based models in fake news 

detection, we selected four prominent architectures: BERT, RoBERTa, DistilBERT, and GPT-2. These models 

represent both encoder-based (BERT variants) and decoder-based (GPT-2) architectures, enabling a diverse 

evaluation of architectural influence on model performance under adversarial stress. Each model was fine-tuned 

on the same dataset using consistent training protocols, with variations only in tokenizer configurations and 

memory-related parameters. 
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Figure 1. BERT Pre-training and Fine-tuning Architecture 

 BERT (Bidirectional Encoder Representations from Transformers): BERT is a deep bidirectional 

transformer encoder trained using masked language modeling and next sentence prediction [2]. For this study, we 

used the bert-base-uncased variant from Hugging Face, which has 12 layers, 768 hidden units, and 110 million 

parameters. Fine-tuning was conducted using the AdamW optimizer with a learning rate of 2e-5, batch size of 16, 

and 5 training epochs. The maximum sequence length was set to 512 tokens, with early stopping enabled based 

on validation loss. 

 RoBERTa (Robustly Optimized BERT Pretraining Approach): RoBERTa modifies BERT’s training 

methodology by removing the Next Sentence Prediction (NSP) objective, using dynamic masking, and pretraining 

on 10x more data [3]. We fine-tuned the roberta-base model, which also has 12 layers and 125 million parameters. 

Hyperparameters were aligned with BERT for consistency, except for the tokenizer and data encoding format (as 

RoBERTa uses raw byte-level BPE). RoBERTa often achieves higher accuracy due to its larger and more diverse 

pretraining corpus. 

 DistilBERT: DistilBERT is a distilled version of BERT, trained using knowledge distillation techniques 

to reduce size and inference time without significant performance loss [4]. It retains 6 of BERT’s 12 layers and 

contains 66 million parameters. We used the distilbert-base-uncased version, with the same fine-tuning protocol 

as BERT. Due to its reduced depth, DistilBERT offers a valuable benchmark for lightweight, real-time 

misinformation detection, especially on edge devices or mobile platforms. 

 

 

  

 

Table 1. Fine-tuning Summary of DistilBERT 

 GPT-2, developed by OpenAI, is a decoder-only autoregressive transformer initially designed for text 

generation [5]. For classification purposes, we adapted the gpt2 model using a LoRA-based fine-tuning strategy 

[36], integrating a classification head after the final transformer block. Due to GPT-2’s unidirectional architecture, 

it does not benefit from context on both sides of a token like BERT does, which often impacts its discriminative 

capacity. We used a smaller batch size of 8 for this model due to higher memory usage, maintaining a learning 

rate of 2e-5 and training it for 5 epochs. Token padding and attention masking were adjusted to accommodate 

GPT-2’s sequence expectations. 

 All models were implemented using PyTorch and Hugging Face’s transformers library, executed on an 

NVIDIA A100 GPU. Early stopping and validation loss monitoring were used to avoid overfitting. Fine-tuning 

logs were retained for reproducibility, and random seeds were set for consistency across runs. This standardized 

Epoch Training Loss Validation Loss Fl 

1 No log 0.436386 0.794697 

2 No log 0.404477 0.825803 

3 0.432300 0.411569 0.819110 

4 0.432300 0.442917 0.825646 

5 0.261200 0.471420 0.818040 
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training environment ensured fair performance comparisons under both clean and adversarially perturbed 

conditions. 

 

c. Adversarial Attack Strategies 

 To evaluate the robustness of our fine-tuned transformer models, we applied a range of adversarial attacks 

that subtly modify input text while preserving human readability. These included five standardized attacks from 

the TextAttack library—TextFooler, PWWS, DeepWordBug, BAE, and TextBugger—each targeting model 

vulnerabilities through distinct strategies such as word-level substitutions, character-level distortions, or hybrid 

manipulations. 

In addition, we developed two custom methods: 

• Enhanced Substitution Attack (ESA), which uses embedding-based synonym replacement with 

semantic filtering to minimize text distortion while misleading the model. 

• Comprehensive Text Attack (CTA), a multi-stage approach combining character scrambling, 

paraphrasing, and synonym cascades to generate robust adversarial examples. 

All attacks were implemented via the TextAttack API to ensure consistency. Adversarial versions of the test set 

were generated for each model, and performance was assessed using metrics such as attack success rate, 

perturbation rate, semantic similarity (via Universal Sentence Encoder), and computational cost. This 

framework provided a comprehensive benchmark of model resilience under adversarial manipulation. 

 

2.4 Evaluation Metrics and Experimental Setup 

 To ensure a fair and comprehensive comparison of model robustness under adversarial conditions, we 

employed a standardized experimental setup and a suite of evaluation metrics tailored for binary classification 

tasks in adversarial NLP. Each model was tested on both clean and perturbed datasets, and key performance 

metrics were recorded pre- and post-attack to assess degradation. 

 The F1-score served as the primary metric, balancing precision and recall, which is especially relevant 

given the class imbalance in fake news detection. Accuracy, precision, and recall provided complementary insights 

into classification performance. Adversarial-specific metrics included Attack Success Rate (ASR), indicating the 

proportion of correct predictions flipped by attacks, and Perturbation Rate, measuring the extent of token 

modification. Semantic Similarity, computed using cosine similarity from Universal Sentence Encoder 

embeddings, ensured that adversarial inputs retained human-like coherence. Computation Time per attack 

example was also recorded to assess practical scalability. 

 Experiments were conducted on an NVIDIA Tesla V100 GPU (32GB VRAM) using Hugging Face 

Transformers and the TextAttack framework. All models were fine-tuned with the AdamW optimizer (learning 

rate: 2e-5), and each configuration was run three times with fixed random seeds to ensure reproducibility. 

 The testing protocol began with baseline evaluations on clean data, followed by systematic application 

of adversarial attacks. Performance degradation was quantified via changes in F1-score and accuracy (delta), with 

per-model and per-attack breakdowns offering deeper insights. Figure 5 illustrates perturbation rate distributions 

across attack types, while Table 3 summarizes all evaluation metrics and their roles in assessing robustness. 

 

 

Metric Purpose 

Accuracy General classification performance 

Precision False positive sensitivity 

Recall False negative sensitivity 

F1-score Balance between precision and recall 

Attack Success Rate Effectiveness of adversarial attacks 

Perturbation Rate Degree of input modification 

Semantic Similarity Human-readability and interpretability of perturbations 

Computation Time Practical feasibility of real-time adversarial generation 

 

Table 2. Evaluation Metrics Overview 

      

3. RESULTS AND DISCUSSION 

 

A. Baseline Performance on Clean Test Set 

 To establish the initial effectiveness of the models in detecting fake news without any adversarial 

perturbations, each model was evaluated on the clean test subset of the 

“newsmediabias/fake_news_elections_labeled_data” dataset. 
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1) BERT Performance 

 The fine-tuned BERT model achieved an accuracy of 80.88%, precision of 83.27%, recall of 91.61%, 

and an F1 score of 87.24%. The high recall indicates its strength in identifying fake news instances, a critical 

aspect in minimizing misinformation dissemination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ROC and Confusion Matrix for BERT   

This visual confirms BERT's classification sensitivity and balance between true positives and false negatives. 

 

2) DistilBERT Performance 

 DistilBERT, a compressed version of BERT, yielded an accuracy of 79.94%, precision of 82.97%, 

recall of 90.43%, and F1 score of 86.54%. Despite having fewer parameters, it retained substantial classification 

ability, making it suitable for real-time or mobile applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. ROC and Confusion Matrix for DistilBERT 

 

It displaying slightly broader false positives than BERT, but competitive performance. 

 

3) RoBERTa Performance 

 

 RoBERTa surpassed all encoder-based models with an accuracy of 82.77%, precision of 85.23%, recall 

of 91.75%, and an F1 score of 88.37%. This is attributed to its dynamic masking, extended training, and larger 

vocabulary. 
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Figure 4. ROC and Confusion Matrix for RoBERTa 

This figure revealing tighter clustering of correct predictions, justifying its superior baseline performance. 

 

4) GPT-2 Performance 

 The GPT-2 model (fine-tuned with LoRA) achieved accuracy of 73.74%, precision of 78.34%, recall 

of 87.33%, and an F1 score of 82.59%. Although recall was high, the lower precision shows it classified more 

real news as fake, indicating over-sensitivity. 

 
 

Figure 8. ROC and Confusion Matrix for GPT-2 

 

It is showing weaker separation of true vs. false positives due to GPT-2’s unidirectional and generative nature. 

 

B. Performnce Under Inbuilt Adversarial Attacks 

 This section evaluates model robustness against five standard adversarial attacks: TextFooler, PWWS, 

DeepWordBug, BAE, and TextBugger, using the TextAttack framework. 

 

1) BERT 

 TextFooler achieved a 100% attack success rate, fully collapsing BERT’s classification (accuracy 

reduced to 0%). PWWS (94.44%) and TextBugger (88.89%) were also effective. DeepWordBug, a character-level 

attack, had lower impact (61.11% success), allowing 35% residual accuracy. BAE, relying on subtle substitutions, 

was least successful (33.33%). 

 

Metric BAE DeepWordBug Text Bugger PWWS TextFooler 

Number of successful attacks 6 11 16 17 18 

Number of failed attacks 12 7 2   0 
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Number of skipped attacks 2 2 2 2 2 

Original Accuracy 90.00% 90.00% 90.00% 90.00% 90.00% 

Accuracy Under Attack 60.00% 35.00% 10.00% 5.00% 0.00% 

Attack Success Rate 33.33% 61.11% 88.89% 94.44% 100.00% 

Average Perturbed Word % 4.66% 8.53% 42.49% 6.93% 10.23% 

Average Number of Words/Input 339.9 339.9 339.9 339.9 339.9 

Average Number of Queries 578.06 299.39 508.17 1793.28 648.56 

 

Table 3. BERT’s Performance Under Inbuilt Adversarial Attack 

 

2) DistilBERT 

 TextFooler and PWWS dropped accuracy to 5%, both achieving 94.12% success rates, showing 

DistilBERT’s fragility. TextBugger followed closely at 88.24%. DeepWordBug and BAE were less effective, but 

DistilBERT’s overall vulnerability was the highest. 

 

 

Metric 

 

BAE 

 

DeepWordBug 

 

TextBugger 

 

PWWS 

 

TextFooler 

Number of successful attacks 5 9 15 16 16 

Number of failed attacks 12 8 2     

Number of skipped attacks 3 3 3 3 3 

Original Accuracy 85.00% 85.00% 85.00% 85.00% 85.00% 

Accuracy Under Attack 60.00% 40.00% 10.00% 5.00% 5.00% 

Attack Success Rate 29.41% 52.94% 88.24% 94.12% 94.12% 

Average Perturbed Word % 4.28% 13.58% 45.25% 9.56% 9.91% 

Average Number of Words/Input 339.9 339.9 339.9 339.9 339.9 

Average Number of Queries 549.24 301.41 481.12 1990.41 786.41 

 

Table 4. details these results: DistilBERT’s drop from 80% baseline to 0–10% accuracy under adversarial 

pressure. 

 

3) RoBERTa 

 RoBERTa resisted DeepWordBug relatively well (33.33% success), maintaining 60% accuracy. 

However, TextFooler and PWWS dropped it to 5% (94.44% success). Despite its strong baseline, RoBERTa’s 

weakness under word-level adversarial changes was evident. 

 

Metric BAE DeepWordBug TextBugger PWWS TextFooler 

Number of successful attacks 10 6 16 17 17 

Number of failed attacks 8 12 2 1 1 

Number of skipped attacks 2 2 2 2 2 

Original Accuracy 90.00% 90.00% 90.00% 90.00% 90.00% 

Accuracy Under Attack 40.00% 60.00% 10.00% 5.00% 5.00% 

Attack Success Rate 55.56% 33.33% 88.89% 94.44% 94.44% 

Average Perturbed Word % 6.96% 8.84% 49.78% 8.35% 9.13% 

Average Number of Words/Input 339.9 339.9 339.9 339.9 339.9 

Average Number of Queries 548.72 338.39 539.5 2012.89 698.28 
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Table 5. RoBERTa’s Performance Under Inbuilt Adversarial Attack 

 

4) GPT-2 

 GPT-2 was fully compromised by TextFooler, PWWS, and TextBugger—all reducing accuracy to 0%. 

Even BAE (84.62%) caused significant performance collapse. DeepWordBug was least effective, but still dropped 

accuracy to 25%. 

Metric BAE DeepWordBug TextBugger PWWS TextFooler 

Number of successful attacks 11 8 13 13 13 

Number of failed attacks 2 5 0 0 0 

Number of skipped attacks 7 7 7 7 7 

Original Accuracy 65.00% 65.00% 65.00% 65.00% 65.00% 

Accuracy Under Attack 10.00% 25.00% 0.00% 0.00% 0.00% 

Attack Success Rate 84.62% 61.54% 100.00% 100.00% 100.00% 

Average Perturbed Word % 2.19% 3.87% 32.85% 3.49% 5.04% 

Average Number of Words/Input 339.9 339.9 339.9 339.9 339.9 

Average Number of Queries 427.77 384.23 664.08 2438.69 722.15 

 

Table 6. GPT-2's universal vulnerability across all attack types. 

 

C. Performnce Under Custom Adversarial Attacks 

 Two new adversarial strategies were developed: Enhanced Substitution Attack (ESA) and 

Comprehensive Text Attack (CTA). 

      

  1) BERT 

 ESA dropped BERT's accuracy to 5.0% with just 10.41%-word perturbation. CTA had similar success 

(accuracy: 10%) but required 61.1% perturbation, suggesting ESA is more precise and stealthier. 

 

 

Metric ESA CTA 

Number of successful attacks 17 16 

Number of failed attacks 1 2 

Number of skipped attacks 2 2 

Original accuracy 90.00% 90.00% 

Accuracy under attack 5.00% 10.00% 

Attack success rate 94.44% 88.89% 

Average perturbed word % 10.41% 61.10% 

Average num. words per input 339.9 339.9 

Avg num queries 210.83 629.33 

 

Table7.  BERT’s Performance Under Custom Adversarial Attack 

 

2) DistilBERT 

 ESA caused a complete collapse—100% attack success, 0% accuracy—with only 12.69% 

perturbation. CTA (88.24% success) needed 71.56% changes. This reinforces DistilBERT’s fragility and ESA’s 

efficiency. 
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Metric ESA CTA 

Number of successful attacks 17 15 

Number of failed attacks 0 2 

Number of skipped attacks 3 3 

Original accuracy 85.00% 85.00% 

Accuracy under attack 0.00% 10.00% 

Attack success rate 100.00% 88.24% 

Average perturbed word % 12.69% 71.56% 

Average num. words per input 339.9 339.9 

Avg num queries 258.82 635.35 

 

Table 8. DistilBERT’s Performance Under Custom Adversarial Attack 

 

3) RoBERTa 

 Both ESA and CTA were highly effective against RoBERTa, achieving 94.44% attack success. However, 

ESA required significantly fewer perturbations (10.36%) compared to CTA (79.53%) to drop accuracy from 90.0% 

to 5.0%. ESA also used fewer queries (213.89) than CTA (695.78), making it more efficient overall. 

 

Metric ESA CTA 

Attack Success Rate (%) 94.44 94.44 

Accuracy (%) 5.00 5.00 

Perturbation Rate (%) 10.36 79.53 

Avg. Query Count 213.89 695.78 

 

Table 9. RoBERTa’s Performance Under Custom Adversarial Attack 

 

4) GPT-2 

 GPT-2 was entirely compromised by both attacks, with 100% attack success and final accuracy of 0.0%. 

ESA demonstrated exceptional stealth, requiring only 5.49% perturbation and 109.31 queries, while CTA 

demanded over 52.52% perturbation and 520.77 queries for the same outcome, indicating higher computational 

cost. 

 

Metric ESA CTA 

Attack Success Rate (%) 100.00 100.00 

Accuracy (%) 0.00 0.00 

Perturbation Rate (%) 5.49 52.52 

Avg. Query Count 109.31 520.77 

 

Table 10. GPT-2’s Performance Under Custom Adversarial Attack 

D. Discussion 

 The results from adversarial testing provide a comprehensive understanding of model vulnerabilities and 

the effectiveness of various attack strategies. In the case of RoBERTa, both the Efficient Semantic Attack (ESA) 

and the Character-based Textual Attack (CTA) achieved a remarkable 94.44% attack success rate, significantly 

reducing the model's classification accuracy to just 5%. However, a notable distinction emerged in the efficiency 

of these attacks. ESA accomplished this with minimal intervention, altering only 10.36% of the input text and 

requiring relatively few queries, whereas CTA relied on heavy perturbation, modifying 79.53% of the text and 

consuming significantly more computational resources. This highlights ESA’s advantage in maintaining semantic 

integrity while achieving comparable results with less computational effort. 

 A similar trend was observed in the case of GPT-2, which proved to be exceptionally fragile under 

adversarial pressure. ESA successfully reduced GPT-2’s accuracy to 0% with just 5.49% text perturbation and 

around 109 queries, illustrating its potency and efficiency. In contrast, CTA, although equally effective in 

completely disrupting the model, demanded a much higher level of perturbation (52.52%) and over 520 queries, 

further reinforcing the brute-force nature of CTA and the relative elegance of ESA. GPT-2’s collapse under even 
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minimal adversarial manipulation indicates that, despite its strengths in generative tasks, it lacks the robustness 

needed for sensitive classification applications like fake news detection. 

 A broader comparative discussion of the adversarial experiments yields key insights. ESA emerged as 

the most efficient and powerful custom attack across models, achieving high success rates with minimal text 

distortion and low computational overhead. In contrast, CTA, while also effective, compromised the readability 

of text and required substantial computational resources, reflecting a brute-force approach rather than a strategic 

one. Among the inbuilt adversarial attack methods, TextFooler and PWWS stood out for their balance between 

subtle perturbations and successful degradation of model performance. These methods managed to compromise 

models effectively without significantly altering the readability or semantics of the input text. From a model 

perspective, DistilBERT consistently showed the highest vulnerability, failing under both inbuilt and custom 

attack scenarios. Its lightweight architecture, while beneficial for speed and efficiency, appears to compromise its 

defensive strength against adversarial manipulation. RoBERTa, although demonstrating superior baseline 

performance in clean data scenarios, was still susceptible to word-level adversarial modifications. However, it 

showed relatively better resistance to character-level attacks like DeepWordBug, highlighting some degree of 

robustness in its token-level encoding mechanisms. GPT-2, despite its capabilities in generative tasks, proved 

unsuitable for adversarially robust classification. The model's architecture, optimized for text generation rather 

than discriminative tasks, likely contributes to its complete breakdown under even low-perturbation attacks. These 

findings underscore the importance of adversarial testing in the development and evaluation of NLP models, 

particularly in high-stakes domains such as misinformation detection. Understanding how models respond under 

targeted manipulation is critical not only for benchmarking their reliability but also for designing more resilient 

architectures capable of withstanding real-world adversarial threats. 

 4. CONCLUSION 

 This study investigated the effectiveness and robustness of state-of-the-art transformer-based models—

BERT, RoBERTa, DistilBERT, and GPT-2—in the domain of fake news detection, a critical application area in 

Natural Language Processing (NLP). By fine-tuning each model on the 

“newsmediabias/fake_news_elections_labeled_data” dataset, strong baseline results were observed, with 

RoBERTa achieving the highest F1 score (88.37%) and accuracy (82.77%), followed closely by BERT and 

DistilBERT. To evaluate real-world deployment readiness, the models were subjected to rigorous adversarial stress 

testing using both inbuilt attacks (TextFooler, PWWS, DeepWordBug, BAE, TextBugger) and custom-designed 

methods (Enhanced Substitution Attack and Comprehensive Text Attack). The results revealed alarming 

vulnerabilities across all models. Attacks like TextFooler and ESA consistently achieved near-complete 

degradation of model performance, even when using subtle perturbations that preserved semantic coherence. The 

custom attacks were particularly effective: ESA demonstrated high success with minimal text changes and low 

computational cost, whereas CTA required extensive modifications but achieved similar outcomes. These findings 

emphasize that current fake news detection systems, though accurate under clean conditions, lack robustness 

against adversarial manipulations—a serious concern for their deployment in sensitive environments such as 

political discourse, public health, and journalism. Among the evaluated models, DistilBERT proved the most 

vulnerable, collapsing under most attacks due to its reduced complexity. Conversely, RoBERTa exhibited the 

highest resilience, especially to character-level attacks like DeepWordBug. However, even RoBERTa failed 

against efficient word-level perturbations. Most notably, GPT-2, originally designed for generative tasks, failed 

drastically when adapted for classification. Despite fine-tuning, it was entirely compromised by all adversarial 

methods, including minimal-input attacks, demonstrating its unsuitability for fake news classification tasks. 

In summary, this project highlights that while transformer-based models can effectively detect fake news under 

normal conditions, adversarial robustness remains a critical gap. To advance toward trustworthy NLP systems, 

future work must explore defensive strategies, including adversarial training, input sanitization, and hybrid 

modeling approaches. These directions are essential to ensure that AI-based fake news detection systems remain 

reliable, secure, and interpretable in real-world, adversary-prone environments. 
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